A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.

Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patient...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masanori Atsukawa, Akihito Tsubota, Chisa Kondo, Sawako Uchida-Kobayashi, Koichi Takaguchi, Akemi Tsutsui, Akito Nozaki, Makoto Chuma, Isao Hidaka, Tsuyoshi Ishikawa, Motoh Iwasa, Yasuyuki Tamai, Maki Tobari, Kentaro Matsuura, Yoshihito Nagura, Hiroshi Abe, Keizo Kato, Kenta Suzuki, Tomomi Okubo, Taeang Arai, Norio Itokawa, Hidenori Toyoda, Masaru Enomoto, Akihiro Tamori, Yasuhito Tanaka, Norifumi Kawada, Yoshiyuki Takei, Katsuhiko Iwakiri
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e69808e076ea4aec9a7fd56343d31f28
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e69808e076ea4aec9a7fd56343d31f28
record_format dspace
spelling oai:doaj.org-article:e69808e076ea4aec9a7fd56343d31f282021-12-02T20:08:18ZA novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.1932-620310.1371/journal.pone.0257166https://doaj.org/article/e69808e076ea4aec9a7fd56343d31f282021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0257166https://doaj.org/toc/1932-6203Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA+-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = -6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA+-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, -0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10-81 and 1.88 × 10-48, respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices.Masanori AtsukawaAkihito TsubotaChisa KondoSawako Uchida-KobayashiKoichi TakaguchiAkemi TsutsuiAkito NozakiMakoto ChumaIsao HidakaTsuyoshi IshikawaMotoh IwasaYasuyuki TamaiMaki TobariKentaro MatsuuraYoshihito NaguraHiroshi AbeKeizo KatoKenta SuzukiTomomi OkuboTaeang AraiNorio ItokawaHidenori ToyodaMasaru EnomotoAkihiro TamoriYasuhito TanakaNorifumi KawadaYoshiyuki TakeiKatsuhiko IwakiriPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0257166 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Masanori Atsukawa
Akihito Tsubota
Chisa Kondo
Sawako Uchida-Kobayashi
Koichi Takaguchi
Akemi Tsutsui
Akito Nozaki
Makoto Chuma
Isao Hidaka
Tsuyoshi Ishikawa
Motoh Iwasa
Yasuyuki Tamai
Maki Tobari
Kentaro Matsuura
Yoshihito Nagura
Hiroshi Abe
Keizo Kato
Kenta Suzuki
Tomomi Okubo
Taeang Arai
Norio Itokawa
Hidenori Toyoda
Masaru Enomoto
Akihiro Tamori
Yasuhito Tanaka
Norifumi Kawada
Yoshiyuki Takei
Katsuhiko Iwakiri
A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
description Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA+-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = -6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA+-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, -0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10-81 and 1.88 × 10-48, respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices.
format article
author Masanori Atsukawa
Akihito Tsubota
Chisa Kondo
Sawako Uchida-Kobayashi
Koichi Takaguchi
Akemi Tsutsui
Akito Nozaki
Makoto Chuma
Isao Hidaka
Tsuyoshi Ishikawa
Motoh Iwasa
Yasuyuki Tamai
Maki Tobari
Kentaro Matsuura
Yoshihito Nagura
Hiroshi Abe
Keizo Kato
Kenta Suzuki
Tomomi Okubo
Taeang Arai
Norio Itokawa
Hidenori Toyoda
Masaru Enomoto
Akihiro Tamori
Yasuhito Tanaka
Norifumi Kawada
Yoshiyuki Takei
Katsuhiko Iwakiri
author_facet Masanori Atsukawa
Akihito Tsubota
Chisa Kondo
Sawako Uchida-Kobayashi
Koichi Takaguchi
Akemi Tsutsui
Akito Nozaki
Makoto Chuma
Isao Hidaka
Tsuyoshi Ishikawa
Motoh Iwasa
Yasuyuki Tamai
Maki Tobari
Kentaro Matsuura
Yoshihito Nagura
Hiroshi Abe
Keizo Kato
Kenta Suzuki
Tomomi Okubo
Taeang Arai
Norio Itokawa
Hidenori Toyoda
Masaru Enomoto
Akihiro Tamori
Yasuhito Tanaka
Norifumi Kawada
Yoshiyuki Takei
Katsuhiko Iwakiri
author_sort Masanori Atsukawa
title A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
title_short A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
title_full A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
title_fullStr A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
title_full_unstemmed A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C.
title_sort novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis c.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/e69808e076ea4aec9a7fd56343d31f28
work_keys_str_mv AT masanoriatsukawa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akihitotsubota anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT chisakondo anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT sawakouchidakobayashi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT koichitakaguchi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akemitsutsui anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akitonozaki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT makotochuma anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT isaohidaka anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsuyoshiishikawa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT motohiwasa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yasuyukitamai anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT makitobari anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kentaromatsuura anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yoshihitonagura anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hiroshiabe anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT keizokato anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kentasuzuki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tomomiokubo anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT taeangarai anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT norioitokawa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hidenoritoyoda anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT masaruenomoto anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akihirotamori anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yasuhitotanaka anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT norifumikawada anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yoshiyukitakei anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT katsuhikoiwakiri anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT masanoriatsukawa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akihitotsubota novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT chisakondo novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT sawakouchidakobayashi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT koichitakaguchi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akemitsutsui novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akitonozaki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT makotochuma novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT isaohidaka novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsuyoshiishikawa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT motohiwasa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yasuyukitamai novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT makitobari novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kentaromatsuura novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yoshihitonagura novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hiroshiabe novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT keizokato novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kentasuzuki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tomomiokubo novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT taeangarai novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT norioitokawa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hidenoritoyoda novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT masaruenomoto novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT akihirotamori novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yasuhitotanaka novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT norifumikawada novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT yoshiyukitakei novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT katsuhikoiwakiri novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
_version_ 1718375213612138496