Blind Image Super Resolution Using Deep Unsupervised Learning
The goal of single image super resolution (SISR) is to recover a high-resolution (HR) image from a low-resolution (LR) image. Deep learning based methods have recently made a remarkable performance gain in terms of both the effectiveness and efficiency for SISR. Most existing methods have to be trai...
Enregistré dans:
Auteurs principaux: | Kazuhiro Yamawaki, Yongqing Sun, Xian-Hua Han |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e69d84375f974e61a94f0ec7054d7e12 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pixel-Level Kernel Estimation for Blind Super-Resolution
par: Jaihyun Lew, et autres
Publié: (2021) -
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
par: Zhengrui Peng, et autres
Publié: (2021) -
A New Full-Reference Image Quality Metric for Motion Blur Profile Characterization
par: Mohammad Abdullah-Al-Mamun, et autres
Publié: (2021) -
Smart Glass System Using Deep Learning for the Blind and Visually Impaired
par: Mukhriddin Mukhiddinov, et autres
Publié: (2021) -
Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
par: Ivan Kuric, et autres
Publié: (2021)