Comparison of Argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity
Abstract Accumulating evidence suggests that various genetic and environmental factors contribute to the development of obesity. Among the latter, the gut microbiota has emerged as a critical player in the regulation of human metabolism and health and the development of non-communicable chronic dise...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6a889af69584affabc716b5fdf45c8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Accumulating evidence suggests that various genetic and environmental factors contribute to the development of obesity. Among the latter, the gut microbiota has emerged as a critical player in the regulation of human metabolism and health and the development of non-communicable chronic diseases. Considering that no information on this matter is available in Argentina, our aim was to identify the microorganisms associated with obesity as well as their potential functionality. Using high throughput sequencing of 16SrRNA bacterial gene and diverse bioinformatics tools, we observed that the gut microbiota of obese and overweight individuals differs qualitatively and quantitatively from that from their lean counterparts. The comparison of the gut microbiota composition in obese subjects from Argentina, US and UK showed that the beta diversity significantly differs among the three countries, indicating that obesity-associated microbiota composition changes according to the geographical origin of the individuals. Moreover, four distinct microbiotypes were identified in obese individuals, whose prevalence and metabolic pathway signature differed according to the country, indicating that obesity associated dysbiosis would comprise several structures. In summary, identification of distinct taxonomic signatures associated with obesity might be a novel promising tool to stratify patients based on their microbiome configuration to design strategies for managing obesity. |
---|