Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems
Due to the continuous monitoring process of critical patients, Intensive Care Units (ICU) generate large amounts of data, which are difficult for healthcare personnel to analyze manually, especially in overloaded situations such as those present during the COVID-19 pandemic. Therefore, the automatic...
Guardado en:
Autores principales: | José A. González-Nóvoa, Laura Busto, Juan J. Rodríguez-Andina, José Fariña, Marta Segura, Vanesa Gómez, Dolores Vila, César Veiga |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6b12e8e171a4d8c80d062b3f7b2529b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effectiveness of application of a manual for improvement of alarms management by nurses in Intensive Care Units
por: Amirhossein Yousefinya, et al.
Publicado: (2021) -
Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization
por: Morteza Esmaeili, et al.
Publicado: (2021) -
Turning the blackbox into a glassbox: An explainable machine learning approach for understanding hospitality customer
por: Ritu Sharma, et al.
Publicado: (2021) -
Detection of Historical Alarm Subsequences Using Alarm Events and a Coactivation Constraint
por: Gianluca Manca, et al.
Publicado: (2021) -
Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations
por: Gianluca Manca, et al.
Publicado: (2021)