Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems
Due to the continuous monitoring process of critical patients, Intensive Care Units (ICU) generate large amounts of data, which are difficult for healthcare personnel to analyze manually, especially in overloaded situations such as those present during the COVID-19 pandemic. Therefore, the automatic...
Enregistré dans:
Auteurs principaux: | José A. González-Nóvoa, Laura Busto, Juan J. Rodríguez-Andina, José Fariña, Marta Segura, Vanesa Gómez, Dolores Vila, César Veiga |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e6b12e8e171a4d8c80d062b3f7b2529b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Effectiveness of application of a manual for improvement of alarms management by nurses in Intensive Care Units
par: Amirhossein Yousefinya, et autres
Publié: (2021) -
Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization
par: Morteza Esmaeili, et autres
Publié: (2021) -
Turning the blackbox into a glassbox: An explainable machine learning approach for understanding hospitality customer
par: Ritu Sharma, et autres
Publié: (2021) -
Detection of Historical Alarm Subsequences Using Alarm Events and a Coactivation Constraint
par: Gianluca Manca, et autres
Publié: (2021) -
Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations
par: Gianluca Manca, et autres
Publié: (2021)