Detecting and Interpreting Faults in Vulnerable Power Grids With Machine Learning
Unscheduled power disturbances cause severe consequences both for customers and grid operators. To defend against such events, it is necessary to identify the causes of interruptions in the power distribution network. In this work, we focus on the power grid of a Norwegian community in the Arctic th...
Guardado en:
Autores principales: | Odin Foldvik Eikeland, Inga Setsa Holmstrand, Sigurd Bakkejord, Matteo Chiesa, Filippo Maria Bianchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6cf18fd246c4185a14693093cd6ecef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021) -
Fault Diagnosis Based on Machine Learning for the High Frequency Link of a Grid-Tied Photovoltaic Converter for a Wide Range of Irradiance Conditions
por: Yuniel Leon-Ruiz, et al.
Publicado: (2021) -
SENSORLESS DIRECT POWER CONTROL FOR THREE-PHASE GRID SIDE CONVERTER INTEGRATED INTO WIND TURBINE SYSTEM UNDER DISTURBED GRID VOLTAGES
por: I. Boukhechem, et al.
Publicado: (2020) -
A Multi-Layer Security Scheme for Mitigating Smart Grid Vulnerability against Faults and Cyber-Attacks
por: Jian Chen, et al.
Publicado: (2021) -
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
por: Abdul Karim, et al.
Publicado: (2021)