Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers

ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Justin E. Silpe, Bonnie L. Bassler
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/e6d17c7cfaeb49d2b173cf2abc40112a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e6d17c7cfaeb49d2b173cf2abc40112a
record_format dspace
spelling oai:doaj.org-article:e6d17c7cfaeb49d2b173cf2abc40112a2021-11-15T15:55:26ZPhage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers10.1128/mBio.00638-192150-7511https://doaj.org/article/e6d17c7cfaeb49d2b173cf2abc40112a2019-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00638-19https://doaj.org/toc/2150-7511ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N-acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced by the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection. IMPORTANCE Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed.Justin E. SilpeBonnie L. BasslerAmerican Society for MicrobiologyarticleLuxRphageacyl homoserine lactoneautoinducerlysislysogenyMicrobiologyQR1-502ENmBio, Vol 10, Iss 2 (2019)
institution DOAJ
collection DOAJ
language EN
topic LuxR
phage
acyl homoserine lactone
autoinducer
lysis
lysogeny
Microbiology
QR1-502
spellingShingle LuxR
phage
acyl homoserine lactone
autoinducer
lysis
lysogeny
Microbiology
QR1-502
Justin E. Silpe
Bonnie L. Bassler
Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
description ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N-acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced by the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection. IMPORTANCE Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed.
format article
author Justin E. Silpe
Bonnie L. Bassler
author_facet Justin E. Silpe
Bonnie L. Bassler
author_sort Justin E. Silpe
title Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
title_short Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
title_full Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
title_fullStr Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
title_full_unstemmed Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers
title_sort phage-encoded luxr-type receptors responsive to host-produced bacterial quorum-sensing autoinducers
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/e6d17c7cfaeb49d2b173cf2abc40112a
work_keys_str_mv AT justinesilpe phageencodedluxrtypereceptorsresponsivetohostproducedbacterialquorumsensingautoinducers
AT bonnielbassler phageencodedluxrtypereceptorsresponsivetohostproducedbacterialquorumsensingautoinducers
_version_ 1718427185833836544