Robust seed germination prediction using deep learning and RGB image data
Abstract Achieving seed germination quality standards poses a real challenge to seed companies as they are compelled to abide by strict certification rules, while having only partial seed separation solutions at their disposal. This discrepancy results with wasteful disqualification of seed lots hol...
Guardado en:
Autores principales: | Yuval Nehoshtan, Elad Carmon, Omer Yaniv, Sharon Ayal, Or Rotem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6d8b5732c46423491df96fce6f6479b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable identification and mapping of trees using UAV RGB image and deep learning
por: Masanori Onishi, et al.
Publicado: (2021) -
Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images
por: Motohisa Fukuda, et al.
Publicado: (2021) -
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images
por: Ke Xu, et al.
Publicado: (2021) -
Intraoperative Resting-State Functional Connectivity Based on RGB Imaging
por: Charly Caredda, et al.
Publicado: (2021) -
Non-Deep Physiological Dormancy in Seed and Germination Requirements of <i>Lysimachia coreana</i> Nakai
por: Saeng Geul Baek, et al.
Publicado: (2021)