Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity
Abstract We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians in the same Hilbert space to be transformed into one another. The result is straightforward yet, for example, it lays the foundation to implementing or mimicking dynamics with the most control...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6e450c86b144c06bfaf88cda13e1ecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e6e450c86b144c06bfaf88cda13e1ecc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e6e450c86b144c06bfaf88cda13e1ecc2021-12-02T13:30:12ZHamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity10.1038/s41598-021-84289-42045-2322https://doaj.org/article/e6e450c86b144c06bfaf88cda13e1ecc2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84289-4https://doaj.org/toc/2045-2322Abstract We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians in the same Hilbert space to be transformed into one another. The result is straightforward yet, for example, it lays the foundation to implementing or mimicking dynamics with the most controllable Hamiltonian. As a promising application, this existence theorem allows for a rapidly evolving realization of adiabatic quantum computation by transforming a Hamiltonian where dynamics is in the adiabatic regime into a rapidly evolving one. We illustrate the theorem with examples.Lian-Ao WuDvira SegalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-5 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lian-Ao Wu Dvira Segal Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
description |
Abstract We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians in the same Hilbert space to be transformed into one another. The result is straightforward yet, for example, it lays the foundation to implementing or mimicking dynamics with the most controllable Hamiltonian. As a promising application, this existence theorem allows for a rapidly evolving realization of adiabatic quantum computation by transforming a Hamiltonian where dynamics is in the adiabatic regime into a rapidly evolving one. We illustrate the theorem with examples. |
format |
article |
author |
Lian-Ao Wu Dvira Segal |
author_facet |
Lian-Ao Wu Dvira Segal |
author_sort |
Lian-Ao Wu |
title |
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
title_short |
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
title_full |
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
title_fullStr |
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
title_full_unstemmed |
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
title_sort |
hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e6e450c86b144c06bfaf88cda13e1ecc |
work_keys_str_mv |
AT lianaowu hamiltoniantransformabilityfastadiabaticdynamicsandhiddenadiabaticity AT dvirasegal hamiltoniantransformabilityfastadiabaticdynamicsandhiddenadiabaticity |
_version_ |
1718392947672612864 |