Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications

Abstract Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for pot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahdi Ayoubi, Parvaneh Naserzadeh, Mohammad Taghi Hashemi, Mohammad Reza Rostami, Elnaz Tamjid, Mohammad Mahdi Tavakoli, Abdolreza Simchi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e6eec650af1b4f3e9b3e4f0ec7925abe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for potential bioimaging applications. The nanocrystals had an average diameter of ~4 nm, a hydrodynamic size of ~8 nm, and a high quantum efficiency of 28%. Toxicity assay of the hybrid CQD in the cultured human mononuclear blood cells does not show cytotoxicity up to 200 µg/ml. At high concentrations, damage to mitochondrial activity and mitochondrial membrane potential (MMP) due to the formation of uncontrollable amounts of intracellular oxygen radicals (ROS) was observed. Cell membrane and Lysosome damage or a transition in mitochondrial permeability were also noticed. Understanding of cell-nanoparticle interaction at the molecular level is useful for the development of new fluorophores for biomedical imaging.