Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners

Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohan Midhun, Leite Rodrigo Vieira, Broadbent Eben North, Wan Mohd Jaafar Wan Shafrina, Srinivasan Shruthi, Bajaj Shaurya, Dalla Corte Ana Paula, do Amaral Cibele Hummel, Gopan Gopika, Saad Siti Nor Maizah, Muhmad Kamarulzaman Aisyah Marliza, Prata Gabriel Atticciati, Llewelyn Emma, Johnson Daniel J., Doaemo Willie, Bohlman Stephanie, Almeyda Zambrano Angelica Maria, Cardil Adrián
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
chm
lm
Acceso en línea:https://doaj.org/article/e6efe252560c4497af96b9725612a367
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e6efe252560c4497af96b9725612a367
record_format dspace
spelling oai:doaj.org-article:e6efe252560c4497af96b9725612a3672021-12-05T14:10:49ZIndividual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners2391-544710.1515/geo-2020-0290https://doaj.org/article/e6efe252560c4497af96b9725612a3672021-09-01T00:00:00Zhttps://doi.org/10.1515/geo-2020-0290https://doaj.org/toc/2391-5447Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual tree detection (ITD), which is required to calculate forest attributes such as stem volume, forest uniformity, and biomass estimation. However, users may find adopting the UAVs and algorithms for their specific projects challenging due to the plethora of information available. Herein, we provide a step-by-step tutorial for performing ITD using (i) low-cost UAV-derived imagery and (ii) UAV-based high-density lidar (light detection and ranging). Functions from open-source R packages were implemented to develop a canopy height model (CHM) and perform ITD utilizing the local maxima (LM) algorithm. ITD accuracy assessment statistics and validation were derived through manual visual interpretation from high-resolution imagery and field-data-based accuracy assessment. As the intended audience are beginners in remote sensing, we have adopted a very simple methodology and chosen study plots that have relatively open canopies to demonstrate our proposed approach; the respective R codes and sample plot data are available as supplementary materials.Mohan MidhunLeite Rodrigo VieiraBroadbent Eben NorthWan Mohd Jaafar Wan ShafrinaSrinivasan ShruthiBajaj ShauryaDalla Corte Ana Paulado Amaral Cibele HummelGopan GopikaSaad Siti Nor MaizahMuhmad Kamarulzaman Aisyah MarlizaPrata Gabriel AtticciatiLlewelyn EmmaJohnson Daniel J.Doaemo WillieBohlman StephanieAlmeyda Zambrano Angelica MariaCardil AdriánDe Gruyterarticlesingle tree detectionchmlmdronesuav tutorialsforestry data analysisforest remote sensingGeologyQE1-996.5ENOpen Geosciences, Vol 13, Iss 1, Pp 1028-1039 (2021)
institution DOAJ
collection DOAJ
language EN
topic single tree detection
chm
lm
drones
uav tutorials
forestry data analysis
forest remote sensing
Geology
QE1-996.5
spellingShingle single tree detection
chm
lm
drones
uav tutorials
forestry data analysis
forest remote sensing
Geology
QE1-996.5
Mohan Midhun
Leite Rodrigo Vieira
Broadbent Eben North
Wan Mohd Jaafar Wan Shafrina
Srinivasan Shruthi
Bajaj Shaurya
Dalla Corte Ana Paula
do Amaral Cibele Hummel
Gopan Gopika
Saad Siti Nor Maizah
Muhmad Kamarulzaman Aisyah Marliza
Prata Gabriel Atticciati
Llewelyn Emma
Johnson Daniel J.
Doaemo Willie
Bohlman Stephanie
Almeyda Zambrano Angelica Maria
Cardil Adrián
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
description Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual tree detection (ITD), which is required to calculate forest attributes such as stem volume, forest uniformity, and biomass estimation. However, users may find adopting the UAVs and algorithms for their specific projects challenging due to the plethora of information available. Herein, we provide a step-by-step tutorial for performing ITD using (i) low-cost UAV-derived imagery and (ii) UAV-based high-density lidar (light detection and ranging). Functions from open-source R packages were implemented to develop a canopy height model (CHM) and perform ITD utilizing the local maxima (LM) algorithm. ITD accuracy assessment statistics and validation were derived through manual visual interpretation from high-resolution imagery and field-data-based accuracy assessment. As the intended audience are beginners in remote sensing, we have adopted a very simple methodology and chosen study plots that have relatively open canopies to demonstrate our proposed approach; the respective R codes and sample plot data are available as supplementary materials.
format article
author Mohan Midhun
Leite Rodrigo Vieira
Broadbent Eben North
Wan Mohd Jaafar Wan Shafrina
Srinivasan Shruthi
Bajaj Shaurya
Dalla Corte Ana Paula
do Amaral Cibele Hummel
Gopan Gopika
Saad Siti Nor Maizah
Muhmad Kamarulzaman Aisyah Marliza
Prata Gabriel Atticciati
Llewelyn Emma
Johnson Daniel J.
Doaemo Willie
Bohlman Stephanie
Almeyda Zambrano Angelica Maria
Cardil Adrián
author_facet Mohan Midhun
Leite Rodrigo Vieira
Broadbent Eben North
Wan Mohd Jaafar Wan Shafrina
Srinivasan Shruthi
Bajaj Shaurya
Dalla Corte Ana Paula
do Amaral Cibele Hummel
Gopan Gopika
Saad Siti Nor Maizah
Muhmad Kamarulzaman Aisyah Marliza
Prata Gabriel Atticciati
Llewelyn Emma
Johnson Daniel J.
Doaemo Willie
Bohlman Stephanie
Almeyda Zambrano Angelica Maria
Cardil Adrián
author_sort Mohan Midhun
title Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
title_short Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
title_full Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
title_fullStr Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
title_full_unstemmed Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
title_sort individual tree detection using uav-lidar and uav-sfm data: a tutorial for beginners
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/e6efe252560c4497af96b9725612a367
work_keys_str_mv AT mohanmidhun individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT leiterodrigovieira individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT broadbentebennorth individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT wanmohdjaafarwanshafrina individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT srinivasanshruthi individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT bajajshaurya individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT dallacorteanapaula individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT doamaralcibelehummel individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT gopangopika individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT saadsitinormaizah individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT muhmadkamarulzamanaisyahmarliza individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT pratagabrielatticciati individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT llewelynemma individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT johnsondanielj individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT doaemowillie individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT bohlmanstephanie individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT almeydazambranoangelicamaria individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
AT cardiladrian individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners
_version_ 1718371695201353728