Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6efe252560c4497af96b9725612a367 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e6efe252560c4497af96b9725612a367 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e6efe252560c4497af96b9725612a3672021-12-05T14:10:49ZIndividual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners2391-544710.1515/geo-2020-0290https://doaj.org/article/e6efe252560c4497af96b9725612a3672021-09-01T00:00:00Zhttps://doi.org/10.1515/geo-2020-0290https://doaj.org/toc/2391-5447Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual tree detection (ITD), which is required to calculate forest attributes such as stem volume, forest uniformity, and biomass estimation. However, users may find adopting the UAVs and algorithms for their specific projects challenging due to the plethora of information available. Herein, we provide a step-by-step tutorial for performing ITD using (i) low-cost UAV-derived imagery and (ii) UAV-based high-density lidar (light detection and ranging). Functions from open-source R packages were implemented to develop a canopy height model (CHM) and perform ITD utilizing the local maxima (LM) algorithm. ITD accuracy assessment statistics and validation were derived through manual visual interpretation from high-resolution imagery and field-data-based accuracy assessment. As the intended audience are beginners in remote sensing, we have adopted a very simple methodology and chosen study plots that have relatively open canopies to demonstrate our proposed approach; the respective R codes and sample plot data are available as supplementary materials.Mohan MidhunLeite Rodrigo VieiraBroadbent Eben NorthWan Mohd Jaafar Wan ShafrinaSrinivasan ShruthiBajaj ShauryaDalla Corte Ana Paulado Amaral Cibele HummelGopan GopikaSaad Siti Nor MaizahMuhmad Kamarulzaman Aisyah MarlizaPrata Gabriel AtticciatiLlewelyn EmmaJohnson Daniel J.Doaemo WillieBohlman StephanieAlmeyda Zambrano Angelica MariaCardil AdriánDe Gruyterarticlesingle tree detectionchmlmdronesuav tutorialsforestry data analysisforest remote sensingGeologyQE1-996.5ENOpen Geosciences, Vol 13, Iss 1, Pp 1028-1039 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
single tree detection chm lm drones uav tutorials forestry data analysis forest remote sensing Geology QE1-996.5 |
spellingShingle |
single tree detection chm lm drones uav tutorials forestry data analysis forest remote sensing Geology QE1-996.5 Mohan Midhun Leite Rodrigo Vieira Broadbent Eben North Wan Mohd Jaafar Wan Shafrina Srinivasan Shruthi Bajaj Shaurya Dalla Corte Ana Paula do Amaral Cibele Hummel Gopan Gopika Saad Siti Nor Maizah Muhmad Kamarulzaman Aisyah Marliza Prata Gabriel Atticciati Llewelyn Emma Johnson Daniel J. Doaemo Willie Bohlman Stephanie Almeyda Zambrano Angelica Maria Cardil Adrián Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
description |
Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from-motion (SfM), machine learning, and robotics. An important preliminary step with regard to forest inventory and management is individual tree detection (ITD), which is required to calculate forest attributes such as stem volume, forest uniformity, and biomass estimation. However, users may find adopting the UAVs and algorithms for their specific projects challenging due to the plethora of information available. Herein, we provide a step-by-step tutorial for performing ITD using (i) low-cost UAV-derived imagery and (ii) UAV-based high-density lidar (light detection and ranging). Functions from open-source R packages were implemented to develop a canopy height model (CHM) and perform ITD utilizing the local maxima (LM) algorithm. ITD accuracy assessment statistics and validation were derived through manual visual interpretation from high-resolution imagery and field-data-based accuracy assessment. As the intended audience are beginners in remote sensing, we have adopted a very simple methodology and chosen study plots that have relatively open canopies to demonstrate our proposed approach; the respective R codes and sample plot data are available as supplementary materials. |
format |
article |
author |
Mohan Midhun Leite Rodrigo Vieira Broadbent Eben North Wan Mohd Jaafar Wan Shafrina Srinivasan Shruthi Bajaj Shaurya Dalla Corte Ana Paula do Amaral Cibele Hummel Gopan Gopika Saad Siti Nor Maizah Muhmad Kamarulzaman Aisyah Marliza Prata Gabriel Atticciati Llewelyn Emma Johnson Daniel J. Doaemo Willie Bohlman Stephanie Almeyda Zambrano Angelica Maria Cardil Adrián |
author_facet |
Mohan Midhun Leite Rodrigo Vieira Broadbent Eben North Wan Mohd Jaafar Wan Shafrina Srinivasan Shruthi Bajaj Shaurya Dalla Corte Ana Paula do Amaral Cibele Hummel Gopan Gopika Saad Siti Nor Maizah Muhmad Kamarulzaman Aisyah Marliza Prata Gabriel Atticciati Llewelyn Emma Johnson Daniel J. Doaemo Willie Bohlman Stephanie Almeyda Zambrano Angelica Maria Cardil Adrián |
author_sort |
Mohan Midhun |
title |
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
title_short |
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
title_full |
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
title_fullStr |
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
title_full_unstemmed |
Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners |
title_sort |
individual tree detection using uav-lidar and uav-sfm data: a tutorial for beginners |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/e6efe252560c4497af96b9725612a367 |
work_keys_str_mv |
AT mohanmidhun individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT leiterodrigovieira individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT broadbentebennorth individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT wanmohdjaafarwanshafrina individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT srinivasanshruthi individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT bajajshaurya individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT dallacorteanapaula individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT doamaralcibelehummel individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT gopangopika individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT saadsitinormaizah individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT muhmadkamarulzamanaisyahmarliza individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT pratagabrielatticciati individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT llewelynemma individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT johnsondanielj individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT doaemowillie individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT bohlmanstephanie individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT almeydazambranoangelicamaria individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners AT cardiladrian individualtreedetectionusinguavlidaranduavsfmdataatutorialforbeginners |
_version_ |
1718371695201353728 |