Mechanical Learning for Prediction of Sepsis-Associated Encephalopathy
Objective: The study aims to develop a mechanical learning model as a predictive model for predicting the appearance of sepsis-associated encephalopathy (SAE).Materials and Methods: The prediction model was developed in a primary cohort of 2,028 sepsis patients from June 2001 to October 2012, retrie...
Enregistré dans:
Auteurs principaux: | Lina Zhao, Yunying Wang, Zengzheng Ge, Huadong Zhu, Yi Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e7111c7ce5fc4ff788a3892c1ce480ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development and Validation of a Nomogram for the Prediction of Hospital Mortality of Patients With Encephalopathy Caused by Microbial Infection: A Retrospective Cohort Study
par: Lina Zhao, et autres
Publié: (2021) -
Corrigendum: Development and Validation of a Nomogram for the Prediction of Hospital Mortality of Patients With Encephalopathy Caused by Microbial Infection: A Retrospective Cohort Study
par: Lina Zhao, et autres
Publié: (2021) -
Morphometric Investigation of Neurons in the Hippocampal CA1, CA3 Areas and Dentate Gyrus in a Rat Model of Sepsis
par: Kafa,Ilker M, et autres
Publié: (2010) -
Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy
par: Xiaoyao Peng, et autres
Publié: (2021) -
Blocking HMGB1/RAGE Signaling by Berberine Alleviates A1 Astrocyte and Attenuates Sepsis-Associated Encephalopathy
par: Jian Shi, et autres
Publié: (2021)