Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation
Digital mammography has seen an explosion in the number of radiomic features used for risk-assessment modeling. However, having more features is not necessarily beneficial, as some features may be overly sensitive to imaging physics (contrast, noise, and image sharpness). To measure the effects of i...
Enregistré dans:
Auteurs principaux: | Raymond J. Acciavatti, Eric A. Cohen, Omid Haji Maghsoudi, Aimilia Gastounioti, Lauren Pantalone, Meng-Kang Hsieh, Emily F. Conant, Christopher G. Scott, Stacey J. Winham, Karla Kerlikowske, Celine Vachon, Andrew D. A. Maidment, Despina Kontos |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e71709f14ea1497aa9a63b8d583d6da1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Diagnosis of Breast Cancer Using Radiomics Models Built Based on Dynamic Contrast Enhanced MRI Combined With Mammography
par: You-Fan Zhao, et autres
Publié: (2021) -
Anthropomorphic Symbols on Neolithic Vessels from Puglia
par: Aprile Giorgia, et autres
Publié: (2021) -
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
par: Samy Ammari, et autres
Publié: (2021) -
Radiomics and Artificial Intelligence in Uterine Sarcomas: A Systematic Review
par: Gloria Ravegnini, et autres
Publié: (2021) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
par: Alessandro Stefano, et autres
Publié: (2021)