Derivations of the Young-Laplace equation
The classical Young-Laplace equation relates capillary pressure to surface tension and the principal radii of curvature of the interface between two immiscible fluids. In this paper the required properties of space curves and smooth surfaces are described by differential geometry and linear algebra....
Guardado en:
Autores principales: | Leiv Magne Siqveland, Svein Magne Skjaeveland |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Yandy Scientific Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7207b951bd84586b821b71b5b5c8999 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Decay estimates for solutions of evolutionary damped p-Laplace equations
por: Farid Bozorgnia, et al.
Publicado: (2021) -
Solution of partial differential equations by new double integral transform (Laplace - Sumudu transform)
por: Shams A. Ahmed, et al.
Publicado: (2021) -
Solutions and eigenvalues of Laplace's equation on bounded open sets
por: Guangchong Yang, et al.
Publicado: (2021) -
Computing the inverse Laplace transform for rational functions vanishing at infinity
por: Sudo,Takahiro
Publicado: (2014) -
Computing the Laplace transform and the convolution for more functions adjoined
por: Sudo,Takahiro
Publicado: (2015)