Partial cross mapping eliminates indirect causal influences
It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world da...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e72498840e1b4a95b6f0ce9021512759 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e72498840e1b4a95b6f0ce9021512759 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e72498840e1b4a95b6f0ce90215127592021-12-02T15:49:49ZPartial cross mapping eliminates indirect causal influences10.1038/s41467-020-16238-02041-1723https://doaj.org/article/e72498840e1b4a95b6f0ce90215127592020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16238-0https://doaj.org/toc/2041-1723It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world data.Siyang LengHuanfei MaJürgen KurthsYing-Cheng LaiWei LinKazuyuki AiharaLuonan ChenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Siyang Leng Huanfei Ma Jürgen Kurths Ying-Cheng Lai Wei Lin Kazuyuki Aihara Luonan Chen Partial cross mapping eliminates indirect causal influences |
description |
It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world data. |
format |
article |
author |
Siyang Leng Huanfei Ma Jürgen Kurths Ying-Cheng Lai Wei Lin Kazuyuki Aihara Luonan Chen |
author_facet |
Siyang Leng Huanfei Ma Jürgen Kurths Ying-Cheng Lai Wei Lin Kazuyuki Aihara Luonan Chen |
author_sort |
Siyang Leng |
title |
Partial cross mapping eliminates indirect causal influences |
title_short |
Partial cross mapping eliminates indirect causal influences |
title_full |
Partial cross mapping eliminates indirect causal influences |
title_fullStr |
Partial cross mapping eliminates indirect causal influences |
title_full_unstemmed |
Partial cross mapping eliminates indirect causal influences |
title_sort |
partial cross mapping eliminates indirect causal influences |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/e72498840e1b4a95b6f0ce9021512759 |
work_keys_str_mv |
AT siyangleng partialcrossmappingeliminatesindirectcausalinfluences AT huanfeima partialcrossmappingeliminatesindirectcausalinfluences AT jurgenkurths partialcrossmappingeliminatesindirectcausalinfluences AT yingchenglai partialcrossmappingeliminatesindirectcausalinfluences AT weilin partialcrossmappingeliminatesindirectcausalinfluences AT kazuyukiaihara partialcrossmappingeliminatesindirectcausalinfluences AT luonanchen partialcrossmappingeliminatesindirectcausalinfluences |
_version_ |
1718385723614167040 |