Partial cross mapping eliminates indirect causal influences

It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world da...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siyang Leng, Huanfei Ma, Jürgen Kurths, Ying-Cheng Lai, Wei Lin, Kazuyuki Aihara, Luonan Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e72498840e1b4a95b6f0ce9021512759
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e72498840e1b4a95b6f0ce9021512759
record_format dspace
spelling oai:doaj.org-article:e72498840e1b4a95b6f0ce90215127592021-12-02T15:49:49ZPartial cross mapping eliminates indirect causal influences10.1038/s41467-020-16238-02041-1723https://doaj.org/article/e72498840e1b4a95b6f0ce90215127592020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16238-0https://doaj.org/toc/2041-1723It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world data.Siyang LengHuanfei MaJürgen KurthsYing-Cheng LaiWei LinKazuyuki AiharaLuonan ChenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Siyang Leng
Huanfei Ma
Jürgen Kurths
Ying-Cheng Lai
Wei Lin
Kazuyuki Aihara
Luonan Chen
Partial cross mapping eliminates indirect causal influences
description It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world data.
format article
author Siyang Leng
Huanfei Ma
Jürgen Kurths
Ying-Cheng Lai
Wei Lin
Kazuyuki Aihara
Luonan Chen
author_facet Siyang Leng
Huanfei Ma
Jürgen Kurths
Ying-Cheng Lai
Wei Lin
Kazuyuki Aihara
Luonan Chen
author_sort Siyang Leng
title Partial cross mapping eliminates indirect causal influences
title_short Partial cross mapping eliminates indirect causal influences
title_full Partial cross mapping eliminates indirect causal influences
title_fullStr Partial cross mapping eliminates indirect causal influences
title_full_unstemmed Partial cross mapping eliminates indirect causal influences
title_sort partial cross mapping eliminates indirect causal influences
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/e72498840e1b4a95b6f0ce9021512759
work_keys_str_mv AT siyangleng partialcrossmappingeliminatesindirectcausalinfluences
AT huanfeima partialcrossmappingeliminatesindirectcausalinfluences
AT jurgenkurths partialcrossmappingeliminatesindirectcausalinfluences
AT yingchenglai partialcrossmappingeliminatesindirectcausalinfluences
AT weilin partialcrossmappingeliminatesindirectcausalinfluences
AT kazuyukiaihara partialcrossmappingeliminatesindirectcausalinfluences
AT luonanchen partialcrossmappingeliminatesindirectcausalinfluences
_version_ 1718385723614167040