Partial cross mapping eliminates indirect causal influences
It is crucial yet challenging to identify cause-consequence relation in complex dynamical systems where direct causal links can mix with indirect ones. Leng et al. propose a data-driven model-independent method to distinguish direct from indirect causality and test its applicability to real-world da...
Guardado en:
Autores principales: | Siyang Leng, Huanfei Ma, Jürgen Kurths, Ying-Cheng Lai, Wei Lin, Kazuyuki Aihara, Luonan Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e72498840e1b4a95b6f0ce9021512759 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
por: Pei Chen, et al.
Publicado: (2020) -
Addressing indirect frequency coupling via partial generalized coherence
por: Joseph Young, et al.
Publicado: (2021) -
The influence of direct and indirect speech on mental representations.
por: Anita Eerland, et al.
Publicado: (2013) -
Dynamic modulation of social influence by indirect reciprocity
por: Joshua Zonca, et al.
Publicado: (2021) -
Identifying causal variants by fine mapping across multiple studies.
por: Nathan LaPierre, et al.
Publicado: (2021)