Z-score linear discriminant analysis for EEG based brain-computer interfaces.
Linear discriminant analysis (LDA) is one of the most popular classification algorithms for brain-computer interfaces (BCI). LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the assumption is not usually held in actual BCI applications...
Guardado en:
Autores principales: | Rui Zhang, Peng Xu, Lanjin Guo, Yangsong Zhang, Peiyang Li, Dezhong Yao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e72d4fc0ff894a55812c19a15fc275c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiple frequencies sequential coding for SSVEP-based brain-computer interface.
por: Yangsong Zhang, et al.
Publicado: (2012) -
A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery
por: Zhou Zhouzhou, et al.
Publicado: (2021) -
An enhanced probabilistic LDA for multi-class brain computer interface.
por: Peng Xu, et al.
Publicado: (2011) -
SSVEP response is related to functional brain network topology entrained by the flickering stimulus.
por: Yangsong Zhang, et al.
Publicado: (2013) -
The modulation of neural insular activity by a brain computer interface differentially affects pain discrimination
por: Philipp Taesler, et al.
Publicado: (2021)