Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017
During recent decades East Africa (EA) and Southern Africa (SA) have experienced an intensification of hydrological hazards, such as floods and droughts, which have dramatically affected the population, making these areas two of the regions of the African continent most vulnerable to these hazards....
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7343263aa124519bc86d4977f71f6d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e7343263aa124519bc86d4977f71f6d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e7343263aa124519bc86d4977f71f6d62021-11-11T18:56:02ZPrecipitation Products’ Inter–Comparison over East and Southern Africa 1983–201710.3390/rs132144192072-4292https://doaj.org/article/e7343263aa124519bc86d4977f71f6d62021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4419https://doaj.org/toc/2072-4292During recent decades East Africa (EA) and Southern Africa (SA) have experienced an intensification of hydrological hazards, such as floods and droughts, which have dramatically affected the population, making these areas two of the regions of the African continent most vulnerable to these hazards. Thus, precipitation monitoring and the evaluation of its variability have become fundamentally important actions through the analysis of long-term data records. In particular, satellite-based precipitation products are often used because they counterbalance the sparsity of the rain gauge networks which often characterize these areas. The aim of this work is to compare and contrast the capabilities of three daily satellite-based products in EA and SA from 1983 to 2017. The selected products are two daily rainfall datasets based on high-resolution thermal infrared observations, TAMSAT version 3 and CHIRPS, and a relatively new global product, MSWEP version 2.2, which merges satellite-based, rain gauge and re-analysis precipitation data. The datasets have been directly intercompared, avoiding the traditional rain gauge validation. This is done by means of pairwise comparison statistics at 0.25° spatial resolution and daily time scale to assess rain–detection and quantitative estimate capabilities. Monthly climatology and spatial distribution of seasonality are analyzed as well. The time evolution of the statistical indexes has been evaluated in order to analyze the stability of the rain detection and estimation performances. Considerable agreement among the precipitation products emerged from the analysis, in spite of the differences occurring in specific situations over complex terrain, such as mountainous and coastal regions and deserts. Moreover, the temporal evolution of the statistical indices has demonstrated that the agreement between the products improved over time, with more stable capabilities in identifying precipitating days and estimating daily precipitation starting in the second half of the 1990s.Elsa CattaniOlivia FergugliaAndrés MerinoVincenzo LevizzaniMDPI AGarticleAfricaprecipitationlong-term data setssatelliteintercomparisonScienceQENRemote Sensing, Vol 13, Iss 4419, p 4419 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Africa precipitation long-term data sets satellite intercomparison Science Q |
spellingShingle |
Africa precipitation long-term data sets satellite intercomparison Science Q Elsa Cattani Olivia Ferguglia Andrés Merino Vincenzo Levizzani Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
description |
During recent decades East Africa (EA) and Southern Africa (SA) have experienced an intensification of hydrological hazards, such as floods and droughts, which have dramatically affected the population, making these areas two of the regions of the African continent most vulnerable to these hazards. Thus, precipitation monitoring and the evaluation of its variability have become fundamentally important actions through the analysis of long-term data records. In particular, satellite-based precipitation products are often used because they counterbalance the sparsity of the rain gauge networks which often characterize these areas. The aim of this work is to compare and contrast the capabilities of three daily satellite-based products in EA and SA from 1983 to 2017. The selected products are two daily rainfall datasets based on high-resolution thermal infrared observations, TAMSAT version 3 and CHIRPS, and a relatively new global product, MSWEP version 2.2, which merges satellite-based, rain gauge and re-analysis precipitation data. The datasets have been directly intercompared, avoiding the traditional rain gauge validation. This is done by means of pairwise comparison statistics at 0.25° spatial resolution and daily time scale to assess rain–detection and quantitative estimate capabilities. Monthly climatology and spatial distribution of seasonality are analyzed as well. The time evolution of the statistical indexes has been evaluated in order to analyze the stability of the rain detection and estimation performances. Considerable agreement among the precipitation products emerged from the analysis, in spite of the differences occurring in specific situations over complex terrain, such as mountainous and coastal regions and deserts. Moreover, the temporal evolution of the statistical indices has demonstrated that the agreement between the products improved over time, with more stable capabilities in identifying precipitating days and estimating daily precipitation starting in the second half of the 1990s. |
format |
article |
author |
Elsa Cattani Olivia Ferguglia Andrés Merino Vincenzo Levizzani |
author_facet |
Elsa Cattani Olivia Ferguglia Andrés Merino Vincenzo Levizzani |
author_sort |
Elsa Cattani |
title |
Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
title_short |
Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
title_full |
Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
title_fullStr |
Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
title_full_unstemmed |
Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017 |
title_sort |
precipitation products’ inter–comparison over east and southern africa 1983–2017 |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/e7343263aa124519bc86d4977f71f6d6 |
work_keys_str_mv |
AT elsacattani precipitationproductsintercomparisonovereastandsouthernafrica19832017 AT oliviaferguglia precipitationproductsintercomparisonovereastandsouthernafrica19832017 AT andresmerino precipitationproductsintercomparisonovereastandsouthernafrica19832017 AT vincenzolevizzani precipitationproductsintercomparisonovereastandsouthernafrica19832017 |
_version_ |
1718431678548934656 |