A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. Th...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e73f847ea7d24c98a5121ef5e71dbab5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e73f847ea7d24c98a5121ef5e71dbab52021-11-22T04:22:48ZA higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution2090-447910.1016/j.asej.2021.04.024https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab52021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2090447921002124https://doaj.org/toc/2090-4479This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. The non-equidistant grid is generated by equi-distributing a non-negative monitor function. The theoretical and empirical error analysis demonstrate that the proposed scheme has fourth-order uniform convergence with respect to the perturbation parameter.Aastha GuptaAditya KaushikElsevierarticleSingular perturbationBoundary value problemsHigher-order approximationGrid equidistributionRobust discretizationHybrid difference schemeEngineering (General). Civil engineering (General)TA1-2040ENAin Shams Engineering Journal, Vol 12, Iss 4, Pp 4211-4221 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Singular perturbation Boundary value problems Higher-order approximation Grid equidistribution Robust discretization Hybrid difference scheme Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Singular perturbation Boundary value problems Higher-order approximation Grid equidistribution Robust discretization Hybrid difference scheme Engineering (General). Civil engineering (General) TA1-2040 Aastha Gupta Aditya Kaushik A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
description |
This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. The non-equidistant grid is generated by equi-distributing a non-negative monitor function. The theoretical and empirical error analysis demonstrate that the proposed scheme has fourth-order uniform convergence with respect to the perturbation parameter. |
format |
article |
author |
Aastha Gupta Aditya Kaushik |
author_facet |
Aastha Gupta Aditya Kaushik |
author_sort |
Aastha Gupta |
title |
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
title_short |
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
title_full |
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
title_fullStr |
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
title_full_unstemmed |
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
title_sort |
higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab5 |
work_keys_str_mv |
AT aasthagupta ahigherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution AT adityakaushik ahigherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution AT aasthagupta higherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution AT adityakaushik higherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution |
_version_ |
1718418254652768256 |