A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution

This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. Th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aastha Gupta, Aditya Kaushik
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e73f847ea7d24c98a5121ef5e71dbab5
record_format dspace
spelling oai:doaj.org-article:e73f847ea7d24c98a5121ef5e71dbab52021-11-22T04:22:48ZA higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution2090-447910.1016/j.asej.2021.04.024https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab52021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2090447921002124https://doaj.org/toc/2090-4479This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. The non-equidistant grid is generated by equi-distributing a non-negative monitor function. The theoretical and empirical error analysis demonstrate that the proposed scheme has fourth-order uniform convergence with respect to the perturbation parameter.Aastha GuptaAditya KaushikElsevierarticleSingular perturbationBoundary value problemsHigher-order approximationGrid equidistributionRobust discretizationHybrid difference schemeEngineering (General). Civil engineering (General)TA1-2040ENAin Shams Engineering Journal, Vol 12, Iss 4, Pp 4211-4221 (2021)
institution DOAJ
collection DOAJ
language EN
topic Singular perturbation
Boundary value problems
Higher-order approximation
Grid equidistribution
Robust discretization
Hybrid difference scheme
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Singular perturbation
Boundary value problems
Higher-order approximation
Grid equidistribution
Robust discretization
Hybrid difference scheme
Engineering (General). Civil engineering (General)
TA1-2040
Aastha Gupta
Aditya Kaushik
A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
description This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. The non-equidistant grid is generated by equi-distributing a non-negative monitor function. The theoretical and empirical error analysis demonstrate that the proposed scheme has fourth-order uniform convergence with respect to the perturbation parameter.
format article
author Aastha Gupta
Aditya Kaushik
author_facet Aastha Gupta
Aditya Kaushik
author_sort Aastha Gupta
title A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
title_short A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
title_full A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
title_fullStr A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
title_full_unstemmed A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
title_sort higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
publisher Elsevier
publishDate 2021
url https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab5
work_keys_str_mv AT aasthagupta ahigherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution
AT adityakaushik ahigherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution
AT aasthagupta higherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution
AT adityakaushik higherorderaccuratedifferenceapproximationofsingularlyperturbedreactiondiffusionproblemusinggridequidistribution
_version_ 1718418254652768256