Surgical and Radiological Anatomy of the Medial Patellofemoral Ligament: A Magnetic Resonance Imaging and Cadaveric Study
The purpose of this study was to compare the measurement of several anatomical features of the medial patellofemoral ligament (MPFL) between magnetic resonance imaging (MRI) and by direct fashion during dissection. We hypothesized that the measurements between these two techniques would agree. MRI o...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e743aca3538f4c928d88423f6b0ae731 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The purpose of this study was to compare the measurement of several anatomical features of the medial patellofemoral ligament (MPFL) between magnetic resonance imaging (MRI) and by direct fashion during dissection. We hypothesized that the measurements between these two techniques would agree. MRI of 30 fresh-frozen cadaveric knees was followed by dissection. MPFL patella and femoral attachment were evaluated; their shape, length, and width were measured; and measurements were compared. MRI was deemed unreliable for the determination of several of the aforementioned anatomical features. Important findings include: (a) observations on MPFL attachment at medial patella side and attachment to quadriceps were identical between dissection and MRI; (b) average width at patella insertion was significantly different between the two methods (<i>p</i> = 0.002); and (c) an attachment to the quadriceps tendon was present in 20/30 specimens and d. detailed measurements of a thin, non-linear, and three-dimensional structure, such as the MPFL, cannot be performed on MRI, due to technical difficulties. This anatomical radiological study highlights the shape, anatomical measurements (length and width), and attachment of the MPFL using a relatively large cadaveric sample and suggests that MRI is not reliable for detailed imaging of its three-dimensional anatomy. |
---|