Deep learning allows genome-scale prediction of Michaelis constants from structural features.
The Michaelis constant KM describes the affinity of an enzyme for a specific substrate and is a central parameter in studies of enzyme kinetics and cellular physiology. As measurements of KM are often difficult and time-consuming, experimental estimates exist for only a minority of enzyme-substrate...
Guardado en:
Autores principales: | Alexander Kroll, Martin K M Engqvist, David Heckmann, Martin J Lercher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e744724226e24f99b89ce9de3626d7c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AI delivers Michaelis constants as fuel for genome-scale metabolic models.
por: Albert A Antolin, et al.
Publicado: (2021) -
Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase
por: Tobias Werther, et al.
Publicado: (2017) -
Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests
por: Jennifer Eberwein, et al.
Publicado: (2017) -
Deep learning for diagnosis of acute promyelocytic leukemia via recognition of genomically imprinted morphologic features
por: John-William Sidhom, et al.
Publicado: (2021) -
Sequence features of retrotransposons allow for epigenetic variability
por: Kevin R Costello, et al.
Publicado: (2021)