Mathematical models for assessing vaccination scenarios in several provinces in Indonesia

To mitigate casualties from the COVID-19 outbreak, this study aims at assessing the optimal vaccination scenarios, considering several existing healthcare conditions and assumptions, by developing SIQRD (Susceptible-Infected-Quarantine-Recovery-Death) models for Jakarta, West Java, and Banten, in In...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: N. Nuraini, K.K. Sukandar, P. Hadisoemarto, H. Susanto, A.I. Hasan, N. Sumarti
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2021
Materias:
Acceso en línea:https://doaj.org/article/e74b333711c243569548d74d61c69561
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e74b333711c243569548d74d61c69561
record_format dspace
spelling oai:doaj.org-article:e74b333711c243569548d74d61c695612021-11-18T04:50:54ZMathematical models for assessing vaccination scenarios in several provinces in Indonesia2468-042710.1016/j.idm.2021.09.002https://doaj.org/article/e74b333711c243569548d74d61c695612021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2468042721000634https://doaj.org/toc/2468-0427To mitigate casualties from the COVID-19 outbreak, this study aims at assessing the optimal vaccination scenarios, considering several existing healthcare conditions and assumptions, by developing SIQRD (Susceptible-Infected-Quarantine-Recovery-Death) models for Jakarta, West Java, and Banten, in Indonesia. The models include an age-structured dynamic transmission model that naturally allows for different treatments among different age groups of the population. The simulation results show that the timing and period of the vaccination should be well planned and prioritizing particular age groups will give a significant impact on the total number of casualties.N. NurainiK.K. SukandarP. HadisoemartoH. SusantoA.I. HasanN. SumartiKeAi Communications Co., Ltd.articleCOVID-19SIQRD modelAge groupsHealthcare capacityVaccination strategyInfectious and parasitic diseasesRC109-216ENInfectious Disease Modelling, Vol 6, Iss , Pp 1236-1258 (2021)
institution DOAJ
collection DOAJ
language EN
topic COVID-19
SIQRD model
Age groups
Healthcare capacity
Vaccination strategy
Infectious and parasitic diseases
RC109-216
spellingShingle COVID-19
SIQRD model
Age groups
Healthcare capacity
Vaccination strategy
Infectious and parasitic diseases
RC109-216
N. Nuraini
K.K. Sukandar
P. Hadisoemarto
H. Susanto
A.I. Hasan
N. Sumarti
Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
description To mitigate casualties from the COVID-19 outbreak, this study aims at assessing the optimal vaccination scenarios, considering several existing healthcare conditions and assumptions, by developing SIQRD (Susceptible-Infected-Quarantine-Recovery-Death) models for Jakarta, West Java, and Banten, in Indonesia. The models include an age-structured dynamic transmission model that naturally allows for different treatments among different age groups of the population. The simulation results show that the timing and period of the vaccination should be well planned and prioritizing particular age groups will give a significant impact on the total number of casualties.
format article
author N. Nuraini
K.K. Sukandar
P. Hadisoemarto
H. Susanto
A.I. Hasan
N. Sumarti
author_facet N. Nuraini
K.K. Sukandar
P. Hadisoemarto
H. Susanto
A.I. Hasan
N. Sumarti
author_sort N. Nuraini
title Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
title_short Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
title_full Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
title_fullStr Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
title_full_unstemmed Mathematical models for assessing vaccination scenarios in several provinces in Indonesia
title_sort mathematical models for assessing vaccination scenarios in several provinces in indonesia
publisher KeAi Communications Co., Ltd.
publishDate 2021
url https://doaj.org/article/e74b333711c243569548d74d61c69561
work_keys_str_mv AT nnuraini mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
AT kksukandar mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
AT phadisoemarto mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
AT hsusanto mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
AT aihasan mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
AT nsumarti mathematicalmodelsforassessingvaccinationscenariosinseveralprovincesinindonesia
_version_ 1718425008953360384