Gradient Decomposition Methods for Training Neural Networks With Non-ideal Synaptic Devices
While promising for high-capacity machine learning accelerators, memristor devices have non-idealities that prevent software-equivalent accuracies when used for online training. This work uses a combination of Mini-Batch Gradient Descent (MBGD) to average gradients, stochastic rounding to avoid vani...
Guardado en:
Autores principales: | Junyun Zhao, Siyuan Huang, Osama Yousuf, Yutong Gao, Brian D. Hoskins, Gina C. Adam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e757422268bc4a378caf150d006973d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influences of the Temperature on the Electrical Properties of HfO<sub>2</sub>-Based Resistive Switching Devices
por: Héctor García, et al.
Publicado: (2021) -
A Highly Robust Binary Neural Network Inference Accelerator Based on Binary Memristors
por: Yiyang Zhao, et al.
Publicado: (2021) -
The role of mangrove fine root production and decomposition on soil organic carbon component ratios
por: Yasong Zhang, et al.
Publicado: (2021) -
SYNTHESIS AND THERMAL DECOMPOSITION KINETICS OF LANTHANUM(III) COMPLEX WITH UNSYMMETRICAL SCHIFF BASE
por: CAIFENG,BI, et al.
Publicado: (2007) -
SYNTHESIS, CRYSTAL STRUCTURE, AND THERMAL DECOMPOSITION KINETICS OF HOLMIUM WITH BENZOATE AND 2, 2'-BIPYRIDINE COMPLEX
por: SUN,SUN JING, et al.
Publicado: (2015)