Gradient Decomposition Methods for Training Neural Networks With Non-ideal Synaptic Devices

While promising for high-capacity machine learning accelerators, memristor devices have non-idealities that prevent software-equivalent accuracies when used for online training. This work uses a combination of Mini-Batch Gradient Descent (MBGD) to average gradients, stochastic rounding to avoid vani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Junyun Zhao, Siyuan Huang, Osama Yousuf, Yutong Gao, Brian D. Hoskins, Gina C. Adam
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/e757422268bc4a378caf150d006973d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares