Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor

Background:Using minimally invasive neurosurgical robots is one of the most desirable ablation methods and resection of brain tumors. In this study, forward kinematics and Jacobian matrix calculated for two single-port robots for comparing the effectiveness of two types of single port minimal invasi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sahar Delasaei Marvi, Arash Sherafati, Majid Mohammad Tahery, Samir Zein
Formato: article
Lenguaje:EN
Publicado: Shahid Beheshti University of Medical Sciences 2020
Materias:
R
Acceso en línea:https://doaj.org/article/e75d7f693dd1471da33d38a6b26983ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e75d7f693dd1471da33d38a6b26983ba
record_format dspace
spelling oai:doaj.org-article:e75d7f693dd1471da33d38a6b26983ba2021-11-16T11:06:27ZComparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor2383-18712383-209610.34172/icnj.2020.26https://doaj.org/article/e75d7f693dd1471da33d38a6b26983ba2020-10-01T00:00:00Zhttps://journals.sbmu.ac.ir/neuroscience/article/view/31420/25815https://doaj.org/toc/2383-1871https://doaj.org/toc/2383-2096Background:Using minimally invasive neurosurgical robots is one of the most desirable ablation methods and resection of brain tumors. In this study, forward kinematics and Jacobian matrix calculated for two single-port robots for comparing the effectiveness of two types of single port minimal invasive surgical robots to ablation and resection of brain tumor Methods: The motion analysis of robots type 1 and 2 has compared to each other. Ablation manipulator in robot type 1 has five degrees of freedom, but in robot type 2, three revolute degrees of freedom of this manipulator has replaced with a revolute joint perpendicular to the previous three revolute joints. Results: Results showed that for resection surgery, in the same conditions, robot type 2 damaged 58.9 mm3 more of cerebral cortex tissue than robot type 1 to resect the brain tumors. To establish a static balance, robot type 2 needs to tolerate at least 41% more internal loading than robot type 1. The maximum velocity for robot type 1 in the contact location between the end-effector and the tumor is 1.7 times more than robot type 2. The maximum end-effector force of robot type 1 to apply the tumor for ablation surgery is more than 1.8 times in robot type 2, but the maximum moment and power for ablation surgery and resection of these two robots were the same less than 1% difference. Conclusion: Despite the more straightforward mechanism, a minimum number of joints, and better kinematics range of robot type 2, robot types 1 has the possibility for transformation, establishes the static balancing, and does a better ablation surgery with less damage to the brain.Sahar Delasaei MarviArash SherafatiMajid Mohammad TaherySamir ZeinShahid Beheshti University of Medical Sciencesarticlesurgical robotablation of the tumorforceresection of tumorbrain tumorMedicineRENInternational Clinical Neuroscience Journal, Vol 7, Iss 4, Pp 201-207 (2020)
institution DOAJ
collection DOAJ
language EN
topic surgical robot
ablation of the tumor
force
resection of tumor
brain tumor
Medicine
R
spellingShingle surgical robot
ablation of the tumor
force
resection of tumor
brain tumor
Medicine
R
Sahar Delasaei Marvi
Arash Sherafati
Majid Mohammad Tahery
Samir Zein
Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
description Background:Using minimally invasive neurosurgical robots is one of the most desirable ablation methods and resection of brain tumors. In this study, forward kinematics and Jacobian matrix calculated for two single-port robots for comparing the effectiveness of two types of single port minimal invasive surgical robots to ablation and resection of brain tumor Methods: The motion analysis of robots type 1 and 2 has compared to each other. Ablation manipulator in robot type 1 has five degrees of freedom, but in robot type 2, three revolute degrees of freedom of this manipulator has replaced with a revolute joint perpendicular to the previous three revolute joints. Results: Results showed that for resection surgery, in the same conditions, robot type 2 damaged 58.9 mm3 more of cerebral cortex tissue than robot type 1 to resect the brain tumors. To establish a static balance, robot type 2 needs to tolerate at least 41% more internal loading than robot type 1. The maximum velocity for robot type 1 in the contact location between the end-effector and the tumor is 1.7 times more than robot type 2. The maximum end-effector force of robot type 1 to apply the tumor for ablation surgery is more than 1.8 times in robot type 2, but the maximum moment and power for ablation surgery and resection of these two robots were the same less than 1% difference. Conclusion: Despite the more straightforward mechanism, a minimum number of joints, and better kinematics range of robot type 2, robot types 1 has the possibility for transformation, establishes the static balancing, and does a better ablation surgery with less damage to the brain.
format article
author Sahar Delasaei Marvi
Arash Sherafati
Majid Mohammad Tahery
Samir Zein
author_facet Sahar Delasaei Marvi
Arash Sherafati
Majid Mohammad Tahery
Samir Zein
author_sort Sahar Delasaei Marvi
title Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
title_short Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
title_full Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
title_fullStr Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
title_full_unstemmed Comparison of the Effectiveness of Two Types of Single Port Minimal Invasive Neurosurgical Robots to Ablation and Resection of Brain Tumor
title_sort comparison of the effectiveness of two types of single port minimal invasive neurosurgical robots to ablation and resection of brain tumor
publisher Shahid Beheshti University of Medical Sciences
publishDate 2020
url https://doaj.org/article/e75d7f693dd1471da33d38a6b26983ba
work_keys_str_mv AT sahardelasaeimarvi comparisonoftheeffectivenessoftwotypesofsingleportminimalinvasiveneurosurgicalrobotstoablationandresectionofbraintumor
AT arashsherafati comparisonoftheeffectivenessoftwotypesofsingleportminimalinvasiveneurosurgicalrobotstoablationandresectionofbraintumor
AT majidmohammadtahery comparisonoftheeffectivenessoftwotypesofsingleportminimalinvasiveneurosurgicalrobotstoablationandresectionofbraintumor
AT samirzein comparisonoftheeffectivenessoftwotypesofsingleportminimalinvasiveneurosurgicalrobotstoablationandresectionofbraintumor
_version_ 1718426578156781568