Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System

This project aims to design a predictive maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system (PEMFC). This predictive MPPT includes the predictive control algorithm of a DC-DC boost converter in the fully functional mathematical modeling of the PEMFC system. The DC-DC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jye Yun Fam, Shen Yuong Wong, Hazrul Bin Mohamed Basri, Mohammad Omar Abdullah, Kasumawati Binti Lias, Saad Mekhilef
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
FC
Acceso en línea:https://doaj.org/article/e76480e1f73c46b09d6c5f62e1894f40
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e76480e1f73c46b09d6c5f62e1894f40
record_format dspace
spelling oai:doaj.org-article:e76480e1f73c46b09d6c5f62e1894f402021-12-03T00:00:24ZPredictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System2169-353610.1109/ACCESS.2021.3129849https://doaj.org/article/e76480e1f73c46b09d6c5f62e1894f402021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9623565/https://doaj.org/toc/2169-3536This project aims to design a predictive maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system (PEMFC). This predictive MPPT includes the predictive control algorithm of a DC-DC boost converter in the fully functional mathematical modeling of the PEMFC system. The DC-DC boost converter is controlled by the MPPT algorithm and regulates the voltage of the PEMFC to extract the maximum output power. All simulations were performed using MATLAB software to show the power characteristics extracted from the PEMFC system. As a result, the newly designed predictive MPPT algorithm has a fast-tracking of maximum power point (MPP) for different fuel cell (FC) parameters. It is confirmed that the proposed MPPT technique exhibits fast tracking of the MPP locus, outstanding accuracy, and robustness with respect to environmental changes. Furthermore, its MPP tracking time is at least five times faster than that of the particle swarm optimizer with the proportional-integral-derivative controller method.Jye Yun FamShen Yuong WongHazrul Bin Mohamed BasriMohammad Omar AbdullahKasumawati Binti LiasSaad MekhilefIEEEarticleMATLABFCPEMFCDC-DC boost converterMPPTElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 157384-157397 (2021)
institution DOAJ
collection DOAJ
language EN
topic MATLAB
FC
PEMFC
DC-DC boost converter
MPPT
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle MATLAB
FC
PEMFC
DC-DC boost converter
MPPT
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Jye Yun Fam
Shen Yuong Wong
Hazrul Bin Mohamed Basri
Mohammad Omar Abdullah
Kasumawati Binti Lias
Saad Mekhilef
Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
description This project aims to design a predictive maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system (PEMFC). This predictive MPPT includes the predictive control algorithm of a DC-DC boost converter in the fully functional mathematical modeling of the PEMFC system. The DC-DC boost converter is controlled by the MPPT algorithm and regulates the voltage of the PEMFC to extract the maximum output power. All simulations were performed using MATLAB software to show the power characteristics extracted from the PEMFC system. As a result, the newly designed predictive MPPT algorithm has a fast-tracking of maximum power point (MPP) for different fuel cell (FC) parameters. It is confirmed that the proposed MPPT technique exhibits fast tracking of the MPP locus, outstanding accuracy, and robustness with respect to environmental changes. Furthermore, its MPP tracking time is at least five times faster than that of the particle swarm optimizer with the proportional-integral-derivative controller method.
format article
author Jye Yun Fam
Shen Yuong Wong
Hazrul Bin Mohamed Basri
Mohammad Omar Abdullah
Kasumawati Binti Lias
Saad Mekhilef
author_facet Jye Yun Fam
Shen Yuong Wong
Hazrul Bin Mohamed Basri
Mohammad Omar Abdullah
Kasumawati Binti Lias
Saad Mekhilef
author_sort Jye Yun Fam
title Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
title_short Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
title_full Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
title_fullStr Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
title_full_unstemmed Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System
title_sort predictive maximum power point tracking for proton exchange membrane fuel cell system
publisher IEEE
publishDate 2021
url https://doaj.org/article/e76480e1f73c46b09d6c5f62e1894f40
work_keys_str_mv AT jyeyunfam predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
AT shenyuongwong predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
AT hazrulbinmohamedbasri predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
AT mohammadomarabdullah predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
AT kasumawatibintilias predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
AT saadmekhilef predictivemaximumpowerpointtrackingforprotonexchangemembranefuelcellsystem
_version_ 1718374020595843072