Paris-CARLA-3D: A Real and Synthetic Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping
Paris-CARLA-3D is a dataset of several dense colored point clouds of outdoor environments built by a mobile LiDAR and camera system. The data are composed of two sets with synthetic data from the open source CARLA simulator (700 million points) and real data acquired in the city of Paris (60 million...
Enregistré dans:
Auteurs principaux: | Jean-Emmanuel Deschaud, David Duque, Jean Pierre Richa, Santiago Velasco-Forero, Beatriz Marcotegui, François Goulette |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e766eab895d74dd6a5d660a9ae6a42e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
par: Muhammad Ibrahim, et autres
Publié: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
par: Genping Zhao, et autres
Publié: (2021) -
Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
par: Anh Vu Vo, et autres
Publié: (2021) -
Mapping tree genera using discrete LiDAR and geometric tree metrics
par: Ko,Connie, et autres
Publié: (2012) -
Point2Wave: 3-D Point Cloud to Waveform Translation Using a Conditional Generative Adversarial Network With Dual Discriminators
par: Takayuki Shinohara, et autres
Publié: (2021)