Megahertz scan rates enabled by optical sampling by repetition-rate tuning

Abstract We demonstrate, for the first time, optical sampling by repetition-rate tuning (OSBERT) at record megahertz scan rates. A low-cost, tunable and extremely compact 2-section passively mode-locked laser diode (MLLD) is used as the pulsed laser source, whose repetition rate can be modulated ele...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D. Bajek, M. A. Cataluna
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e7a10d4b40764dfdaed032a882ece3e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e7a10d4b40764dfdaed032a882ece3e6
record_format dspace
spelling oai:doaj.org-article:e7a10d4b40764dfdaed032a882ece3e62021-11-28T12:21:42ZMegahertz scan rates enabled by optical sampling by repetition-rate tuning10.1038/s41598-021-02502-w2045-2322https://doaj.org/article/e7a10d4b40764dfdaed032a882ece3e62021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02502-whttps://doaj.org/toc/2045-2322Abstract We demonstrate, for the first time, optical sampling by repetition-rate tuning (OSBERT) at record megahertz scan rates. A low-cost, tunable and extremely compact 2-section passively mode-locked laser diode (MLLD) is used as the pulsed laser source, whose repetition rate can be modulated electronically through biasing of the saturable absorber section. The pulsed output is split into two arms comparable to an imbalanced Michelson interferometer, where one arm is significantly longer than the other (a passive delay line, or PDL). The resulting electronic detuning of the repetition rate gives rise to a temporal delay between pulse pairs at a detector; the basis for time-resolved spectroscopy. Through impedance-matching, we developed a new system whereby a sinusoidal electrical bias could be applied to the absorber section of the MLLD via a signal generator, whose frequency could be instantly increased from sub-hertz through to megahertz modulation frequencies, corresponding to a ground-breaking megahertz optical sampling scan rate, which was experimentally demonstrated by the real-time acquisition of a cross-correlation trace of two ultrashort optical pulses within just 1 microsecond of real time. This represents scan rates which are three orders of magnitude greater than the recorded demonstrations of OSBERT to date, and paves the way for highly competitive scan rates across the field of time-resolved spectroscopy and applications therein which range from pump probe spectroscopy to metrology.D. BajekM. A. CatalunaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
D. Bajek
M. A. Cataluna
Megahertz scan rates enabled by optical sampling by repetition-rate tuning
description Abstract We demonstrate, for the first time, optical sampling by repetition-rate tuning (OSBERT) at record megahertz scan rates. A low-cost, tunable and extremely compact 2-section passively mode-locked laser diode (MLLD) is used as the pulsed laser source, whose repetition rate can be modulated electronically through biasing of the saturable absorber section. The pulsed output is split into two arms comparable to an imbalanced Michelson interferometer, where one arm is significantly longer than the other (a passive delay line, or PDL). The resulting electronic detuning of the repetition rate gives rise to a temporal delay between pulse pairs at a detector; the basis for time-resolved spectroscopy. Through impedance-matching, we developed a new system whereby a sinusoidal electrical bias could be applied to the absorber section of the MLLD via a signal generator, whose frequency could be instantly increased from sub-hertz through to megahertz modulation frequencies, corresponding to a ground-breaking megahertz optical sampling scan rate, which was experimentally demonstrated by the real-time acquisition of a cross-correlation trace of two ultrashort optical pulses within just 1 microsecond of real time. This represents scan rates which are three orders of magnitude greater than the recorded demonstrations of OSBERT to date, and paves the way for highly competitive scan rates across the field of time-resolved spectroscopy and applications therein which range from pump probe spectroscopy to metrology.
format article
author D. Bajek
M. A. Cataluna
author_facet D. Bajek
M. A. Cataluna
author_sort D. Bajek
title Megahertz scan rates enabled by optical sampling by repetition-rate tuning
title_short Megahertz scan rates enabled by optical sampling by repetition-rate tuning
title_full Megahertz scan rates enabled by optical sampling by repetition-rate tuning
title_fullStr Megahertz scan rates enabled by optical sampling by repetition-rate tuning
title_full_unstemmed Megahertz scan rates enabled by optical sampling by repetition-rate tuning
title_sort megahertz scan rates enabled by optical sampling by repetition-rate tuning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e7a10d4b40764dfdaed032a882ece3e6
work_keys_str_mv AT dbajek megahertzscanratesenabledbyopticalsamplingbyrepetitionratetuning
AT macataluna megahertzscanratesenabledbyopticalsamplingbyrepetitionratetuning
_version_ 1718408051679035392