Non-Abelian W-representation for GKM
W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Herm...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings. |
---|