Non-Abelian W-representation for GKM

W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Herm...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Mironov, V. Mishnyakov, A. Morozov
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e7a38930efeb4ae59f175355bc53fe3e
record_format dspace
spelling oai:doaj.org-article:e7a38930efeb4ae59f175355bc53fe3e2021-12-04T04:32:23ZNon-Abelian W-representation for GKM0370-269310.1016/j.physletb.2021.136721https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0370269321006614https://doaj.org/toc/0370-2693W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.A. MironovV. MishnyakovA. MorozovElsevierarticlePhysicsQC1-999ENPhysics Letters B, Vol 823, Iss , Pp 136721- (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
A. Mironov
V. Mishnyakov
A. Morozov
Non-Abelian W-representation for GKM
description W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.
format article
author A. Mironov
V. Mishnyakov
A. Morozov
author_facet A. Mironov
V. Mishnyakov
A. Morozov
author_sort A. Mironov
title Non-Abelian W-representation for GKM
title_short Non-Abelian W-representation for GKM
title_full Non-Abelian W-representation for GKM
title_fullStr Non-Abelian W-representation for GKM
title_full_unstemmed Non-Abelian W-representation for GKM
title_sort non-abelian w-representation for gkm
publisher Elsevier
publishDate 2021
url https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e
work_keys_str_mv AT amironov nonabelianwrepresentationforgkm
AT vmishnyakov nonabelianwrepresentationforgkm
AT amorozov nonabelianwrepresentationforgkm
_version_ 1718373063057211392