Non-Abelian W-representation for GKM
W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Herm...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e7a38930efeb4ae59f175355bc53fe3e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e7a38930efeb4ae59f175355bc53fe3e2021-12-04T04:32:23ZNon-Abelian W-representation for GKM0370-269310.1016/j.physletb.2021.136721https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0370269321006614https://doaj.org/toc/0370-2693W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.A. MironovV. MishnyakovA. MorozovElsevierarticlePhysicsQC1-999ENPhysics Letters B, Vol 823, Iss , Pp 136721- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 A. Mironov V. Mishnyakov A. Morozov Non-Abelian W-representation for GKM |
description |
W-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models, when the relevant operators are of a kind of W-operators: for the Hermitian matrix model with the Virasoro constraints, it is a W3-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is appearance of an ordered P-exponential for the set of non-commuting operators of different gradings. |
format |
article |
author |
A. Mironov V. Mishnyakov A. Morozov |
author_facet |
A. Mironov V. Mishnyakov A. Morozov |
author_sort |
A. Mironov |
title |
Non-Abelian W-representation for GKM |
title_short |
Non-Abelian W-representation for GKM |
title_full |
Non-Abelian W-representation for GKM |
title_fullStr |
Non-Abelian W-representation for GKM |
title_full_unstemmed |
Non-Abelian W-representation for GKM |
title_sort |
non-abelian w-representation for gkm |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/e7a38930efeb4ae59f175355bc53fe3e |
work_keys_str_mv |
AT amironov nonabelianwrepresentationforgkm AT vmishnyakov nonabelianwrepresentationforgkm AT amorozov nonabelianwrepresentationforgkm |
_version_ |
1718373063057211392 |