Path homology theory of edge-colored graphs

In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-col...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Muranov Yuri V., Szczepkowska Anna
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/e7a44c1688f642cbbf7f232ddf74e752
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.