On the uniqueness for weak solutions of steady double-phase fluids

We consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1 < p<2 < q<∞. For a wide range of parameters (p, q), we prove the uniqueness of small solutions. We use the p < 2 features to obtain quadrati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abdelwahed Mohamed, Berselli Luigi C., Chorfi Nejmeddine
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/e7c3e89a04e34c2685aa4bf98a1dffae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e7c3e89a04e34c2685aa4bf98a1dffae
record_format dspace
spelling oai:doaj.org-article:e7c3e89a04e34c2685aa4bf98a1dffae2021-12-05T14:10:40ZOn the uniqueness for weak solutions of steady double-phase fluids2191-94962191-950X10.1515/anona-2020-0196https://doaj.org/article/e7c3e89a04e34c2685aa4bf98a1dffae2021-09-01T00:00:00Zhttps://doi.org/10.1515/anona-2020-0196https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XWe consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1 < p<2 < q<∞. For a wide range of parameters (p, q), we prove the uniqueness of small solutions. We use the p < 2 features to obtain quadratic-type estimates for the stress-tensor, while we use the improved regularity coming from the term with q > 2 to justify calculations for weak solutions. Results are obtained through a careful use of the symmetries of the convective term and are also valid for rather general (even anisotropic) stress-tensors.Abdelwahed MohamedBerselli Luigi C.Chorfi NejmeddineDe Gruyterarticleuniquenessdouble-phasesteady motionnon-newtonian fluid76a0535j6235q3035j2535j55AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 454-468 (2021)
institution DOAJ
collection DOAJ
language EN
topic uniqueness
double-phase
steady motion
non-newtonian fluid
76a05
35j62
35q30
35j25
35j55
Analysis
QA299.6-433
spellingShingle uniqueness
double-phase
steady motion
non-newtonian fluid
76a05
35j62
35q30
35j25
35j55
Analysis
QA299.6-433
Abdelwahed Mohamed
Berselli Luigi C.
Chorfi Nejmeddine
On the uniqueness for weak solutions of steady double-phase fluids
description We consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1 < p<2 < q<∞. For a wide range of parameters (p, q), we prove the uniqueness of small solutions. We use the p < 2 features to obtain quadratic-type estimates for the stress-tensor, while we use the improved regularity coming from the term with q > 2 to justify calculations for weak solutions. Results are obtained through a careful use of the symmetries of the convective term and are also valid for rather general (even anisotropic) stress-tensors.
format article
author Abdelwahed Mohamed
Berselli Luigi C.
Chorfi Nejmeddine
author_facet Abdelwahed Mohamed
Berselli Luigi C.
Chorfi Nejmeddine
author_sort Abdelwahed Mohamed
title On the uniqueness for weak solutions of steady double-phase fluids
title_short On the uniqueness for weak solutions of steady double-phase fluids
title_full On the uniqueness for weak solutions of steady double-phase fluids
title_fullStr On the uniqueness for weak solutions of steady double-phase fluids
title_full_unstemmed On the uniqueness for weak solutions of steady double-phase fluids
title_sort on the uniqueness for weak solutions of steady double-phase fluids
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/e7c3e89a04e34c2685aa4bf98a1dffae
work_keys_str_mv AT abdelwahedmohamed ontheuniquenessforweaksolutionsofsteadydoublephasefluids
AT berselliluigic ontheuniquenessforweaksolutionsofsteadydoublephasefluids
AT chorfinejmeddine ontheuniquenessforweaksolutionsofsteadydoublephasefluids
_version_ 1718371872034258944