On the uniqueness for weak solutions of steady double-phase fluids
We consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1 < p<2 < q<∞. For a wide range of parameters (p, q), we prove the uniqueness of small solutions. We use the p < 2 features to obtain quadrati...
Guardado en:
Autores principales: | Abdelwahed Mohamed, Berselli Luigi C., Chorfi Nejmeddine |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7c3e89a04e34c2685aa4bf98a1dffae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ground state solutions to a class of critical Schrödinger problem
por: Mao Anmin, et al.
Publicado: (2021) -
Bifurcation analysis for a modified quasilinear equation with negative exponent
por: Chen Siyu, et al.
Publicado: (2021) -
Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
por: Manouni Said El, et al.
Publicado: (2021) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
por: Wan Haitao, et al.
Publicado: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021)