A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores

Abstract The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate chang...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dylan M. Young, Andy J. Baird, Angela V. Gallego-Sala, Julie Loisel
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e7c48a7581be4cfda093888f0ec6f969
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate change, is an important part of climate-change mitigation strategies. Information from peat cores is often used to recreate a peatland’s C accumulation history from recent decades to past millennia, so that comparisons between past and current rates can be made. However, these present day observations of peatlands’ past C accumulation rates (known as the apparent rate of C accumulation - aCAR) are usually different from the actual uptake or loss of C that occurred at the time (the true C balance). Here we use a simple peatland model and a more detailed ecosystem model to illustrate why aCAR should not be used to compare past and current C accumulation rates. Instead, we propose that data from peat cores are used with existing or new C balance models to produce reliable estimates of how peatland C function has changed over time.