Ultrahigh-speed point scanning two-photon microscopy using high dynamic range silicon photomultipliers
Abstract Conventional two-photon microscopes use photomultiplier tubes, which enable high sensitivity but can detect relatively few photons per second, forcing longer pixel integration times and limiting maximum imaging rates. We introduce novel detection electronics using silicon photomultipliers t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7deef1b6b114f769527cbff79fb3da8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Conventional two-photon microscopes use photomultiplier tubes, which enable high sensitivity but can detect relatively few photons per second, forcing longer pixel integration times and limiting maximum imaging rates. We introduce novel detection electronics using silicon photomultipliers that greatly extend dynamic range, enabling more than an order of magnitude increased photon detection rate as compared to state-of-the-art photomultiplier tubes. We demonstrate that this capability can dramatically improve both imaging rates and signal-to-noise ratio (SNR) in two-photon microscopy using human surgical specimens. Finally, to enable wider use of more advanced detection technology, we have formed the OpenSiPM project, which aims to provide open source detector designs for high-speed two-photon and confocal microscopy. |
---|