Country transition index based on hierarchical clustering to predict next COVID-19 waves
Abstract COVID-19 has widely spread around the world, impacting the health systems of several countries in addition to the collateral damage that societies will face in the next years. Although the comparison between countries is essential for controlling this disease, the main challenge is the fact...
Guardado en:
Autores principales: | Ricardo A. Rios, Tatiane Nogueira, Danilo B. Coimbra, Tiago J. S. Lopes, Ajith Abraham, Rodrigo F. de Mello |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7e050891cb744a7b6f28be86294a943 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of hemophilia A severity using a small-input machine-learning framework
por: Tiago J. S. Lopes, et al.
Publicado: (2021) -
Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII
por: Tiago J. S. Lopes, et al.
Publicado: (2021) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
por: Grégory Papin, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments.
por: Romeo Rizzi, et al.
Publicado: (2010)