Country transition index based on hierarchical clustering to predict next COVID-19 waves
Abstract COVID-19 has widely spread around the world, impacting the health systems of several countries in addition to the collateral damage that societies will face in the next years. Although the comparison between countries is essential for controlling this disease, the main challenge is the fact...
Enregistré dans:
Auteurs principaux: | Ricardo A. Rios, Tatiane Nogueira, Danilo B. Coimbra, Tiago J. S. Lopes, Ajith Abraham, Rodrigo F. de Mello |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e7e050891cb744a7b6f28be86294a943 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediction of hemophilia A severity using a small-input machine-learning framework
par: Tiago J. S. Lopes, et autres
Publié: (2021) -
Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII
par: Tiago J. S. Lopes, et autres
Publié: (2021) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
par: Grégory Papin, et autres
Publié: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
par: Won-Min Song, et autres
Publié: (2012) -
Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments.
par: Romeo Rizzi, et autres
Publié: (2010)