A Modular Tide Level Prediction Method Based on a NARX Neural Network
Tide variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. To improve the accuracy of tide prediction, a modular tide level prediction model (HA-NARX) is proposed. This model divides tide data into two parts: as...
Guardado en:
Autores principales: | Wenhao Wu, Lianbo Li, Jianchuan Yin, Wenyu Lyu, Wenjun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e7e0b7ebc78f418a8388c29d3ac276ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nonlinear Autoregressive Model With Exogenous Input Recurrent Neural Network to Predict Satellites’ Clock Bias
por: Yifeng Liang, et al.
Publicado: (2021) -
Application of the NARX neural network for predicting a one-dimensional time series
por: Tansaule Serikov, et al.
Publicado: (2021) -
Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX
por: Ines Sansa, et al.
Publicado: (2021) -
KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
por: Shengchun Wang, et al.
Publicado: (2021) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021)