A Modular Tide Level Prediction Method Based on a NARX Neural Network
Tide variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. To improve the accuracy of tide prediction, a modular tide level prediction model (HA-NARX) is proposed. This model divides tide data into two parts: as...
Enregistré dans:
Auteurs principaux: | Wenhao Wu, Lianbo Li, Jianchuan Yin, Wenyu Lyu, Wenjun Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e7e0b7ebc78f418a8388c29d3ac276ba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Nonlinear Autoregressive Model With Exogenous Input Recurrent Neural Network to Predict Satellites’ Clock Bias
par: Yifeng Liang, et autres
Publié: (2021) -
Application of the NARX neural network for predicting a one-dimensional time series
par: Tansaule Serikov, et autres
Publié: (2021) -
Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX
par: Ines Sansa, et autres
Publié: (2021) -
KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
par: Shengchun Wang, et autres
Publié: (2021) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
par: Ajla Kulaglic, et autres
Publié: (2021)