The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder

Ni–P–ZrO<sub>2</sub> composite powder was obtained from a galvanic nickel bath with ZrO<sub>2</sub> powder. Production was conducted under galvanostatic conditions. The Ni–P–ZrO<sub>2</sub> composite powder was characterized by the presence of ZrO<sub>2</...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jolanta Niedbała, Magdalena Popczyk, Grzegorz Benke, Hubert Okła, Jadwiga Gabor, Roman Wrzalik, Arkadiusz Stanula, Andrzej S. Swinarew
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/e807a75b9c894702bcdf79fef2062d96
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e807a75b9c894702bcdf79fef2062d96
record_format dspace
spelling oai:doaj.org-article:e807a75b9c894702bcdf79fef2062d962021-11-11T18:08:11ZThe Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder10.3390/ma142165971996-1944https://doaj.org/article/e807a75b9c894702bcdf79fef2062d962021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6597https://doaj.org/toc/1996-1944Ni–P–ZrO<sub>2</sub> composite powder was obtained from a galvanic nickel bath with ZrO<sub>2</sub> powder. Production was conducted under galvanostatic conditions. The Ni–P–ZrO<sub>2</sub> composite powder was characterized by the presence of ZrO<sub>2</sub> particles covered with electrolytical nanocrystalline Ni–P coating. The chemical composition (XRF method), phase structure (XRD method) and morphology (SEM) of Ni–P–ZrO<sub>2</sub> and the distribution of elements in the powder were all investigated. Based on the analyses, it was found that the obtained powder contained about 50 weight % Zr and 40 weight % Ni. Phase structure analysis showed that the basic crystalline component of the tested powder is a mixed oxide of zirconium and yttrium Zr<sub>0.92</sub>Y<sub>0.08</sub>O<sub>1.96</sub>. In addition, the sample contains very large amounts of amorphous compounds (Ni–P). The mechanism to produce the composite powder particles is explained on the basis of Ni<sup>2+</sup> ions adsorption process on the metal oxide particles. Current flow through the cell forces the movement of particles in the bath. Oxide grains with adsorbed nickel ions were transported to the cathode surface. Ni<sup>2+</sup> ions were discharged. The oxide particles were covered with a Ni–P layer and the heavy composite grains of Ni–P–ZrO<sub>2</sub> flowed down to the bottom of the cell.Jolanta NiedbałaMagdalena PopczykGrzegorz BenkeHubert OkłaJadwiga GaborRoman WrzalikArkadiusz StanulaAndrzej S. SwinarewMDPI AGarticleNi–P–ZrO<sub>2</sub> powdercomposite powderchemical compositionsurface morphologyenergy-dispersive spectrometry (EDS)X-ray diffraction (XRD)TechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6597, p 6597 (2021)
institution DOAJ
collection DOAJ
language EN
topic Ni–P–ZrO<sub>2</sub> powder
composite powder
chemical composition
surface morphology
energy-dispersive spectrometry (EDS)
X-ray diffraction (XRD)
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle Ni–P–ZrO<sub>2</sub> powder
composite powder
chemical composition
surface morphology
energy-dispersive spectrometry (EDS)
X-ray diffraction (XRD)
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Jolanta Niedbała
Magdalena Popczyk
Grzegorz Benke
Hubert Okła
Jadwiga Gabor
Roman Wrzalik
Arkadiusz Stanula
Andrzej S. Swinarew
The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
description Ni–P–ZrO<sub>2</sub> composite powder was obtained from a galvanic nickel bath with ZrO<sub>2</sub> powder. Production was conducted under galvanostatic conditions. The Ni–P–ZrO<sub>2</sub> composite powder was characterized by the presence of ZrO<sub>2</sub> particles covered with electrolytical nanocrystalline Ni–P coating. The chemical composition (XRF method), phase structure (XRD method) and morphology (SEM) of Ni–P–ZrO<sub>2</sub> and the distribution of elements in the powder were all investigated. Based on the analyses, it was found that the obtained powder contained about 50 weight % Zr and 40 weight % Ni. Phase structure analysis showed that the basic crystalline component of the tested powder is a mixed oxide of zirconium and yttrium Zr<sub>0.92</sub>Y<sub>0.08</sub>O<sub>1.96</sub>. In addition, the sample contains very large amounts of amorphous compounds (Ni–P). The mechanism to produce the composite powder particles is explained on the basis of Ni<sup>2+</sup> ions adsorption process on the metal oxide particles. Current flow through the cell forces the movement of particles in the bath. Oxide grains with adsorbed nickel ions were transported to the cathode surface. Ni<sup>2+</sup> ions were discharged. The oxide particles were covered with a Ni–P layer and the heavy composite grains of Ni–P–ZrO<sub>2</sub> flowed down to the bottom of the cell.
format article
author Jolanta Niedbała
Magdalena Popczyk
Grzegorz Benke
Hubert Okła
Jadwiga Gabor
Roman Wrzalik
Arkadiusz Stanula
Andrzej S. Swinarew
author_facet Jolanta Niedbała
Magdalena Popczyk
Grzegorz Benke
Hubert Okła
Jadwiga Gabor
Roman Wrzalik
Arkadiusz Stanula
Andrzej S. Swinarew
author_sort Jolanta Niedbała
title The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
title_short The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
title_full The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
title_fullStr The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
title_full_unstemmed The Use of ZrO<sub>2</sub> Waste for the Electrolytic Production of Composite Ni–P–ZrO<sub>2</sub> Powder
title_sort use of zro<sub>2</sub> waste for the electrolytic production of composite ni–p–zro<sub>2</sub> powder
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/e807a75b9c894702bcdf79fef2062d96
work_keys_str_mv AT jolantaniedbała theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT magdalenapopczyk theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT grzegorzbenke theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT hubertokła theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT jadwigagabor theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT romanwrzalik theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT arkadiuszstanula theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT andrzejsswinarew theuseofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT jolantaniedbała useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT magdalenapopczyk useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT grzegorzbenke useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT hubertokła useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT jadwigagabor useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT romanwrzalik useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT arkadiuszstanula useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
AT andrzejsswinarew useofzrosub2subwastefortheelectrolyticproductionofcompositenipzrosub2subpowder
_version_ 1718431975997440000