Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds
Abstract As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone,...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e82f618c71f840fd82619c1861f3eb80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e82f618c71f840fd82619c1861f3eb80 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e82f618c71f840fd82619c1861f3eb802021-12-02T18:24:59ZPreclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds10.1038/s41536-021-00142-22057-3995https://doaj.org/article/e82f618c71f840fd82619c1861f3eb802021-06-01T00:00:00Zhttps://doi.org/10.1038/s41536-021-00142-2https://doaj.org/toc/2057-3995Abstract As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone, and heart. However, it still remains controversial about the potential biological effects of graphene on neuronal activity, especially after severe nerve injuries. In this study, we establish a lengthy peripheral nerve defect rat model and investigate the potential toxicity of layered graphene-loaded polycaprolactone scaffold after implantation during 18 months in vivo. In addition, we further identify possible biologically regenerative effects of this scaffold on myelination, axonal outgrowth, and locomotor function recovery. It is confirmed that graphene-based nanomaterials exert negligible toxicity and repair large nerve defects by dual regulation of Schwann cells and astroglia in the central and peripheral nervous systems. The findings enlighten the future of graphene nanomaterial as a key type of biomaterials for clinical translation in neuronal regeneration.Yun QianXu WangJialin SongWei ChenShuai ChenYi JinYuanming OuyangWei-En YuanCunyi FanNature PortfolioarticleMedicineRENnpj Regenerative Medicine, Vol 6, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R |
spellingShingle |
Medicine R Yun Qian Xu Wang Jialin Song Wei Chen Shuai Chen Yi Jin Yuanming Ouyang Wei-En Yuan Cunyi Fan Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
description |
Abstract As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone, and heart. However, it still remains controversial about the potential biological effects of graphene on neuronal activity, especially after severe nerve injuries. In this study, we establish a lengthy peripheral nerve defect rat model and investigate the potential toxicity of layered graphene-loaded polycaprolactone scaffold after implantation during 18 months in vivo. In addition, we further identify possible biologically regenerative effects of this scaffold on myelination, axonal outgrowth, and locomotor function recovery. It is confirmed that graphene-based nanomaterials exert negligible toxicity and repair large nerve defects by dual regulation of Schwann cells and astroglia in the central and peripheral nervous systems. The findings enlighten the future of graphene nanomaterial as a key type of biomaterials for clinical translation in neuronal regeneration. |
format |
article |
author |
Yun Qian Xu Wang Jialin Song Wei Chen Shuai Chen Yi Jin Yuanming Ouyang Wei-En Yuan Cunyi Fan |
author_facet |
Yun Qian Xu Wang Jialin Song Wei Chen Shuai Chen Yi Jin Yuanming Ouyang Wei-En Yuan Cunyi Fan |
author_sort |
Yun Qian |
title |
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
title_short |
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
title_full |
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
title_fullStr |
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
title_full_unstemmed |
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
title_sort |
preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e82f618c71f840fd82619c1861f3eb80 |
work_keys_str_mv |
AT yunqian preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT xuwang preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT jialinsong preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT weichen preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT shuaichen preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT yijin preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT yuanmingouyang preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT weienyuan preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds AT cunyifan preclinicalassessmentonneuronalregenerationintheinjuryrelatedmicroenvironmentofgraphenebasedscaffolds |
_version_ |
1718378070907289600 |