Improving the linear relaxation of maximum k-cut with semidefinite-based constraints

We consider the maximum k-cut problem that involves partitioning the vertex set of a graph into k subsets such that the sum of the weights of the edges joining vertices in different subsets is maximized. The associated semidefinite programming (SDP) relaxation is known to provide strong bounds, but...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: VilmarJefté Rodrigues de Sousa, MiguelF. Anjos, Sébastien Le Digabel
Formato: article
Lenguaje:EN
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://doaj.org/article/e83f83c8eb1e402f83fc6eed4310cd7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider the maximum k-cut problem that involves partitioning the vertex set of a graph into k subsets such that the sum of the weights of the edges joining vertices in different subsets is maximized. The associated semidefinite programming (SDP) relaxation is known to provide strong bounds, but it has a high computational cost. We use a cutting-plane algorithm that relies on the early termination of an interior point method, and we study the performance of SDP and linear programming (LP) relaxations for various values of k and instance types. The LP relaxation is strengthened using combinatorial facet-defining inequalities and SDP-based constraints. Our computational results suggest that the LP approach, especially with the addition of SDP-based constraints, outperforms the SDP relaxations for graphs with positive-weight edges and k≥7.