Improving the linear relaxation of maximum k-cut with semidefinite-based constraints
We consider the maximum k-cut problem that involves partitioning the vertex set of a graph into k subsets such that the sum of the weights of the edges joining vertices in different subsets is maximized. The associated semidefinite programming (SDP) relaxation is known to provide strong bounds, but...
Enregistré dans:
Auteurs principaux: | VilmarJefté Rodrigues de Sousa, MiguelF. Anjos, Sébastien Le Digabel |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e83f83c8eb1e402f83fc6eed4310cd7b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A branch-and-cut algorithm for the target visitation problem
par: Achim Hildenbrandt
Publié: (2019) -
An exact approach for the multi-constraint graph partitioning problem
par: Diego Recalde, et autres
Publié: (2020) -
Solving the maximum edge-weight clique problem in sparse graphs with compact formulations
par: Luis Gouveia, et autres
Publié: (2015) -
Evaluating balancing on social networks through the efficient solution of correlation clustering problems
par: Mario Levorato, et autres
Publié: (2017) -
A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints
par: C. Gentile, et autres
Publié: (2017)