Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI.
Gadolinium-enhancing lesions reflect active disease and are critical for in-patient monitoring in multiple sclerosis (MS). In this work, we have developed the first fully automated method to segment and count the gadolinium-enhancing lesions from routine clinical MRI of MS patients. The proposed met...
Guardado en:
Autores principales: | Sibaji Gaj, Daniel Ontaneda, Kunio Nakamura |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8588fd874664c289c25174ec0b07f61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictive value of imaging markers at multiple sclerosis disease onset based on gadolinium- and USPIO-enhanced MRI and machine learning.
por: Alessandro Crimi, et al.
Publicado: (2014) -
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
por: Richard McKinley, et al.
Publicado: (2021) -
A deep learning method for automatic segmentation of the bony orbit in MRI and CT images
por: Jared Hamwood, et al.
Publicado: (2021) -
Automatic segmentation with detection of local segmentation failures in cardiac MRI
por: Jörg Sander, et al.
Publicado: (2020) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Shanshan Wang, et al.
Publicado: (2021)