Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP...
Guardado en:
Autores principales: | Robert R Kerr, Anthony N Burkitt, Doreen A Thomas, Matthieu Gilson, David B Grayden |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e865be6d5c874053a57d6598c34823b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral analysis of input spike trains by spike-timing-dependent plasticity.
por: Matthieu Gilson, et al.
Publicado: (2012) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021) -
A solution to the learning dilemma for recurrent networks of spiking neurons
por: Guillaume Bellec, et al.
Publicado: (2020) -
Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex
por: Amit Kumar, et al.
Publicado: (2021) -
Coexistence of reward and unsupervised learning during the operant conditioning of neural firing rates.
por: Robert R Kerr, et al.
Publicado: (2014)