Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lévy process with time-varying delay
In this paper, a reaction-diffusion vegetation-water system with time-varying delay, impulse and Lévy jump is proposed. The existence and uniqueness of the positive solution are proved. Meanwhile, mainly through the principle of comparison, we obtain the sufficient conditions for finite-time stabili...
Guardado en:
Autores principales: | Zixiao Xiong, Xining Li, Ming Ye, Qimin Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8697770f6d74e8d874095552b5fe790 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks
por: Meici Sun, et al.
Publicado: (2021) -
PROBLEMS OF SOAPSTOCK TREATMENT OF VEGETABLE OIL PRODUCTIONS AND THEIR SOLUTIONS
por: L. Sabliy, et al.
Publicado: (2021) -
Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks
por: Keguo Ren, et al.
Publicado: (2021) -
Analysis and Prediction of Heat Induced Deformation Produced By the Line Heating Process Using the Finite Element Method
por: Adán Vega
Publicado: (2009) -
Long-time behaviors of two stochastic mussel-algae models
por: Dengxia Zhou, et al.
Publicado: (2021)