Low-count whole-body PET with deep learning in a multicenter and externally validated study
Abstract More widespread use of positron emission tomography (PET) imaging is limited by its high cost and radiation dose. Reductions in PET scan time or radiotracer dosage typically degrade diagnostic image quality (DIQ). Deep-learning-based reconstruction may improve DIQ, but such methods have not...
Guardado en:
Autores principales: | Akshay S. Chaudhari, Erik Mittra, Guido A. Davidzon, Praveen Gulaka, Harsh Gandhi, Adam Brown, Tao Zhang, Shyam Srinivas, Enhao Gong, Greg Zaharchuk, Hossein Jadvar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e86ee2526a4f48489a765c32f2d6fa8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Akshay S. Chaudhari, et al.
Publicado: (2021) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Sabri Eyuboglu, et al.
Publicado: (2021) -
Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies
por: Hiromitsu Daisaki, et al.
Publicado: (2021) -
68Ga-PSMA11 PET/CT for biochemically recurrent prostate cancer: Influence of dual-time and PMT- vs SiPM-based detectors
por: Heying Duan, et al.
Publicado: (2022) -
Automated coronary calcium scoring using deep learning with multicenter external validation
por: David Eng, et al.
Publicado: (2021)