CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects
Abstract In silico network-based methods have shown promising results in the field of drug development. Yet, most of networks used in the previous research have not included context information even though biological associations actually do appear in the specific contexts. Here, we reconstruct an a...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e86ff0bfc6124139b31a2f0eadf7d511 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e86ff0bfc6124139b31a2f0eadf7d511 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e86ff0bfc6124139b31a2f0eadf7d5112021-12-02T11:52:19ZCODA: Integrating multi-level context-oriented directed associations for analysis of drug effects10.1038/s41598-017-07448-62045-2322https://doaj.org/article/e86ff0bfc6124139b31a2f0eadf7d5112017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07448-6https://doaj.org/toc/2045-2322Abstract In silico network-based methods have shown promising results in the field of drug development. Yet, most of networks used in the previous research have not included context information even though biological associations actually do appear in the specific contexts. Here, we reconstruct an anatomical context-specific network by assigning contexts to biological associations using protein expression data and scientific literature. Furthermore, we employ the context-specific network for the analysis of drug effects with a proximity measure between drug targets and diseases. Distinct from previous context-specific networks, intercellular associations and phenomic level entities such as biological processes are included in our network to represent the human body. It is observed that performances in inferring drug-disease associations are increased by adding context information and phenomic level entities. In particular, hypertension, a disease related to multiple organs and associated with several phenomic level entities, is analyzed in detail to investigate how our network facilitates the inference of drug-disease associations. Our results indicate that the inclusion of context information, intercellular associations, and phenomic level entities can contribute towards a better prediction of drug-disease associations and provide detailed insight into understanding of how drugs affect diseases in the human body.Hasun YuJinmyung JungSeyeol YoonMijin KwonSunghwa BaeSoorin YimJaehyun LeeSeunghyun KimYeeok KangDoheon LeeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hasun Yu Jinmyung Jung Seyeol Yoon Mijin Kwon Sunghwa Bae Soorin Yim Jaehyun Lee Seunghyun Kim Yeeok Kang Doheon Lee CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
description |
Abstract In silico network-based methods have shown promising results in the field of drug development. Yet, most of networks used in the previous research have not included context information even though biological associations actually do appear in the specific contexts. Here, we reconstruct an anatomical context-specific network by assigning contexts to biological associations using protein expression data and scientific literature. Furthermore, we employ the context-specific network for the analysis of drug effects with a proximity measure between drug targets and diseases. Distinct from previous context-specific networks, intercellular associations and phenomic level entities such as biological processes are included in our network to represent the human body. It is observed that performances in inferring drug-disease associations are increased by adding context information and phenomic level entities. In particular, hypertension, a disease related to multiple organs and associated with several phenomic level entities, is analyzed in detail to investigate how our network facilitates the inference of drug-disease associations. Our results indicate that the inclusion of context information, intercellular associations, and phenomic level entities can contribute towards a better prediction of drug-disease associations and provide detailed insight into understanding of how drugs affect diseases in the human body. |
format |
article |
author |
Hasun Yu Jinmyung Jung Seyeol Yoon Mijin Kwon Sunghwa Bae Soorin Yim Jaehyun Lee Seunghyun Kim Yeeok Kang Doheon Lee |
author_facet |
Hasun Yu Jinmyung Jung Seyeol Yoon Mijin Kwon Sunghwa Bae Soorin Yim Jaehyun Lee Seunghyun Kim Yeeok Kang Doheon Lee |
author_sort |
Hasun Yu |
title |
CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
title_short |
CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
title_full |
CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
title_fullStr |
CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
title_full_unstemmed |
CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects |
title_sort |
coda: integrating multi-level context-oriented directed associations for analysis of drug effects |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/e86ff0bfc6124139b31a2f0eadf7d511 |
work_keys_str_mv |
AT hasunyu codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT jinmyungjung codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT seyeolyoon codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT mijinkwon codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT sunghwabae codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT soorinyim codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT jaehyunlee codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT seunghyunkim codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT yeeokkang codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects AT doheonlee codaintegratingmultilevelcontextorienteddirectedassociationsforanalysisofdrugeffects |
_version_ |
1718395137376124928 |