Effects of water level alteration on carbon cycling in peatlands
Globally, peatlands play an important role in the carbon (C) cycle. High water level is a key factor in maintaining C storage in peatlands, but water levels are vulnerable to climate change and anthropogenic disturbance. This review examines literature related to the effects of water level alteratio...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e88a34caad7d47c2a5985254c7556dc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Globally, peatlands play an important role in the carbon (C) cycle. High water level is a key factor in maintaining C storage in peatlands, but water levels are vulnerable to climate change and anthropogenic disturbance. This review examines literature related to the effects of water level alteration on C cycling in peatlands to summarize new ideas and uncertainties emerging in this field. Peatland ecosystems maintain their function by altering plant community structure to adapt to changing water levels. Regarding primary production, woody plants are more productive in unflooded, well-aerated conditions, while Sphagnum mosses are more productive in wetter conditions. The responses of sedges to water level alteration are species-specific. While peat decomposition is faster in unflooded, well aerated conditions, increased plant production may counteract the C loss induced by increased ecosystem respiration (ER) for a period of time. In contrast, rising water table maintains anaerobic conditions and enhances the role of the peatland as a C sink. Nevertheless, changes in DOC flux during water level fluctuation is complicated and depends on the interactions of flooding with environment. Notably, vegetation also plays a role in C flux but particular species vary in their ability to sequester and transport C. Bog ecosystems have a greater resilience to water level alteration than fens, due to differences in biogeochemical responses to hydrology. The full understanding of the role of peatlands in global C cycling deserves much more study due to uncertainties of vegetation feedbacks, peat–water interactions, microbial mediation of vegetation, wildfire, and functional responses after hydrologic restoration. |
---|