A model for transient diffusion in bidisperse pore structures

Abstract A bidisperse model for transient diffusion and adsorption processes in porous materials is presented in this paper. The mathematical model is solved by numerical methods based on finite elements combined with the linear driving force approximation. A criterion based on the model to identify...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wei Sun, Sheng-Li Chen, Ming-Ri Xu, Ya-Qian Wei, Ting-Ting Fan, Bao-Li Ma, Jin-Tao Guo
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e896cd931c99410e90774435aa714392
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e896cd931c99410e90774435aa714392
record_format dspace
spelling oai:doaj.org-article:e896cd931c99410e90774435aa7143922021-12-02T10:17:02ZA model for transient diffusion in bidisperse pore structures10.1007/s12182-019-0338-21672-51071995-8226https://doaj.org/article/e896cd931c99410e90774435aa7143922019-06-01T00:00:00Zhttp://link.springer.com/article/10.1007/s12182-019-0338-2https://doaj.org/toc/1672-5107https://doaj.org/toc/1995-8226Abstract A bidisperse model for transient diffusion and adsorption processes in porous materials is presented in this paper. The mathematical model is solved by numerical methods based on finite elements combined with the linear driving force approximation. A criterion based on the model to identify the diffusion controlling mechanism (macropore diffusion, micropore diffusion, or both) is proposed. The effects of different adsorption isotherms (linear, Freundlich, or Langmuir) on the concentration profiles and on curves of fractional uptake versus time are investigated. In addition, the influences of model parameters concerning the pore networks on the fractional uptake are studied as well.Wei SunSheng-Li ChenMing-Ri XuYa-Qian WeiTing-Ting FanBao-Li MaJin-Tao GuoKeAi Communications Co., Ltd.articleTransient diffusionAdsorptionBidisperse poresMacroporeMicroporeLinear driving forceScienceQPetrologyQE420-499ENPetroleum Science, Vol 16, Iss 6, Pp 1455-1470 (2019)
institution DOAJ
collection DOAJ
language EN
topic Transient diffusion
Adsorption
Bidisperse pores
Macropore
Micropore
Linear driving force
Science
Q
Petrology
QE420-499
spellingShingle Transient diffusion
Adsorption
Bidisperse pores
Macropore
Micropore
Linear driving force
Science
Q
Petrology
QE420-499
Wei Sun
Sheng-Li Chen
Ming-Ri Xu
Ya-Qian Wei
Ting-Ting Fan
Bao-Li Ma
Jin-Tao Guo
A model for transient diffusion in bidisperse pore structures
description Abstract A bidisperse model for transient diffusion and adsorption processes in porous materials is presented in this paper. The mathematical model is solved by numerical methods based on finite elements combined with the linear driving force approximation. A criterion based on the model to identify the diffusion controlling mechanism (macropore diffusion, micropore diffusion, or both) is proposed. The effects of different adsorption isotherms (linear, Freundlich, or Langmuir) on the concentration profiles and on curves of fractional uptake versus time are investigated. In addition, the influences of model parameters concerning the pore networks on the fractional uptake are studied as well.
format article
author Wei Sun
Sheng-Li Chen
Ming-Ri Xu
Ya-Qian Wei
Ting-Ting Fan
Bao-Li Ma
Jin-Tao Guo
author_facet Wei Sun
Sheng-Li Chen
Ming-Ri Xu
Ya-Qian Wei
Ting-Ting Fan
Bao-Li Ma
Jin-Tao Guo
author_sort Wei Sun
title A model for transient diffusion in bidisperse pore structures
title_short A model for transient diffusion in bidisperse pore structures
title_full A model for transient diffusion in bidisperse pore structures
title_fullStr A model for transient diffusion in bidisperse pore structures
title_full_unstemmed A model for transient diffusion in bidisperse pore structures
title_sort model for transient diffusion in bidisperse pore structures
publisher KeAi Communications Co., Ltd.
publishDate 2019
url https://doaj.org/article/e896cd931c99410e90774435aa714392
work_keys_str_mv AT weisun amodelfortransientdiffusioninbidisperseporestructures
AT shenglichen amodelfortransientdiffusioninbidisperseporestructures
AT mingrixu amodelfortransientdiffusioninbidisperseporestructures
AT yaqianwei amodelfortransientdiffusioninbidisperseporestructures
AT tingtingfan amodelfortransientdiffusioninbidisperseporestructures
AT baolima amodelfortransientdiffusioninbidisperseporestructures
AT jintaoguo amodelfortransientdiffusioninbidisperseporestructures
AT weisun modelfortransientdiffusioninbidisperseporestructures
AT shenglichen modelfortransientdiffusioninbidisperseporestructures
AT mingrixu modelfortransientdiffusioninbidisperseporestructures
AT yaqianwei modelfortransientdiffusioninbidisperseporestructures
AT tingtingfan modelfortransientdiffusioninbidisperseporestructures
AT baolima modelfortransientdiffusioninbidisperseporestructures
AT jintaoguo modelfortransientdiffusioninbidisperseporestructures
_version_ 1718397446537609216