Prediction of Tool Forces in Manual Grinding Using Consumer-Grade Sensors and Machine Learning
Tool forces are a decisive parameter for manual grinding with hand-held power tools, which can be used to determine the productivity, quality of the work result, vibration exposition, and tool lifetime. One approach to tool force determination is the prediction of tool forces via measured operating...
Guardado en:
Autores principales: | Matthias Dörr, Lorenz Ott, Sven Matthiesen, Thomas Gwosch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8a36498b5cb4235bbab6de2264a6770 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of laser-assisted ultrasonic vibration dressing parameters of a cubic boron nitride grinding wheel on grinding force, surface quality, and particle morphology
por: Yang Zhibo, et al.
Publicado: (2021) -
Regression models for the front grinding process on Grey Cast Iron block-engine
por: Pérez-Salinas,Cristian, et al.
Publicado: (2019) -
GRINDING OF HARDENED STEELS USING OPTIMIZED COOLING
por: Sampaio Alves,Manoel Cléber de, et al.
Publicado: (2008) -
Key issues and challenges in spice grinding
por: Pramod P. Aradwad, et al.
Publicado: (2021) -
Sensorless Real-Time Force Estimation in Microsurgery Robots Using a Time Series Convolutional Neural Network
por: Jiuyun Xia, et al.
Publicado: (2021)